[1] |
李凡,周军. 功能磁共振成像在乳腺癌诊断中的应用进展[J]. 中国肿瘤外科杂志,2020, 12(1):79-83.
|
[2] |
Zuo T, Wanqing Chen. Advances in research on population-based female breast cancer survival in China[J]. Chinese Journal of Clinical Oncology, 2016, 43(14): 639-642.
|
[3] |
Zingarello A, Mazouni C, Rivera S, et a1. Prognostic assessment and systemic treatments of invasive local relapses of hormone receptor-positive breast cancer[J]. Breast, 2017, 26(35): 162-168.
|
[4] |
Labrie M, Fang Y, Kendsersky ND, et al. Using Reverse Phase Protein Array (RPPA) to Identify and Target Adaptive Resistance[J]. Adv Exp Med Biol, 2019,1188: 251-266.
|
[5] |
Li T, Mello-Thoms C, Brennan PC. Descriptive epidemiology of breast cancer in China: incidence, mortality, survival and prevalence[J]. Breast Cancer Res Treat, 2016,159(3): 395-406.
|
[6] |
Ascolani G, Lio P. Modeling breast cancer progression to bone: how driver mutation order and metabolism matter[J]. BMC Med Genomics, 2019,12(Suppl 6): 106.
|
[7] |
Asnani A, Shi X, Farrell L, et al. Changes in Citric Acid Cycle and Nucleoside Metabolism Are Associated with Anthracycline Cardiotoxicity in Patients with Breast Cancer[J]. J Cardiovasc Transl Res, 2020,13(3): 349-356.
|
[8] |
Yoneten KK, Kasap M, Akpinar G, et al. Comparative Proteome Analysis of Breast Cancer Tissues Highlights the Importance of Glycerol-3-phosphate Dehydrogenase 1 and Monoacylglycerol Lipase in Breast Cancer Metabolism[J]. Cancer Genomics Proteomics, 2019,16(5): 377-397.
|
[9] |
Kresbach GM, Pawlak M. High Precision RPPA: Concept, Features, and Application Performance of the Integrated Zeptosens Platform[J]. Adv Exp Med Biol, 2019,1188: 31-59.
|
[10] |
Ye JX, Huang Q, Xu J, et al. Targeting of glutamine transporter ASCT2 and glutamine synthetase suppresses gastric cancer cell growth[J]. J Cancer Res Clin Oncol, 2018,144(5): 821-833.
|
[11] |
曹丽,石岩硕,庞国勋. 谷氨酰胺在神经系统疾病的临床应用研究进展[J]. 解放军医药杂志,2020, 32(6):113-116.
|
[12] |
Broer A, Gauthier-Coles G, Rahimi F, et al. Ablation of the ASCT2 (SLC1A5) gene encoding a neutral amino acid transporter reveals transporter plasticity and redundancy in cancer cells[J]. J Biol Chem, 2019,294(11): 4012-4026.
|
[13] |
Broer A, Rahimi F, Broer S. Deletion of Amino Acid Transporter ASCT2 (SLC1A5) Reveals an Essential Role for Transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to Sustain Glutaminolysis in Cancer Cells[J]. J Biol Chem, 2016,291(25): 13194-13205.
|
[14] |
Liu Y, Zhao TL, Li ZZ, et al. The role of ASCT2 in cancer: A review[J]. Eur J Pharmacol, 2018,837: 81-87.
|
[15] |
Jiang HL, Zhang N, Tang TZ, et al. Target the human Alanine/Serine/Cysteine Transporter 2(ASCT2): Achievement and Future for Novel Cancer Therapy[J]. Pharmacol Res, 2020,158: 104844.
|
[16] |
Wang L, Liu Y, Zhao TL, et al. Topotecan induces apoptosis via ASCT2 mediated oxidative stress in gastric cancer[J]. Phytomedicine, 2019,57: 117-128.
|
[17] |
Bernhardt S, Bayerlova M, Vetter M, et al. Proteomic profiling of breast cancer metabolism identifies SHMT2 and ASCT2 as prognostic factors[J]. Breast Cancer Res, 2017,19(1): 112.
|
[18] |
Lee GY, Haverty PM, Li L, et al. Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes[J]. Cancer Res, 2014,74(11): 3114-3126.
|
[19] |
Marrocco I, Altieri F, Rubini E, et al. Shmt2: A Stat3 Signaling New Player in Prostate Cancer Energy Metabolism[J]. Cells, 2019,8(9):1048.
|
[20] |
Tong J, Krieger JR, Taylor P, et al. Cancer proteome and metabolite changes linked to SHMT2[J]. PLoS One, 2020,15(9): e0237981.
|
[21] |
Yang X, Wang Z, Li X, et al. SHMT2 Desuccinylation by SIRT5 Drives Cancer Cell Proliferation[J]. Cancer Res, 2018,78(2): 372-386.
|