[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34.
|
[2] |
Jin M, Frankel WL. Lymph Node Metastasis in Colorectal Cancer[J]. Surg Oncol Clin N Am, 2018, 27(2): 401-412.
|
[3] |
Van CUTSEM E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer[J]. Ann Oncol, 2016, 27(8): 1386-1422.
|
[4] |
Spano D, Zollo M. Tumor microenvironment: a main actor in the metastasis process[J]. Clin Exp Metastasis, 2012, 29(4): 381-395.
|
[5] |
Arina A, Idel C, Hyjek EM, et al. Tumor-associated fibroblasts predominantly come from local and not circulating precursors[J]. Proc Natl Acad Sci USA, 2016, 113(27): 7551-7556.
|
[6] |
Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts[J]. Nat Rev Cancer, 2020, 20(3): 174-186.
|
[7] |
Gaggioli C, Hooper S, Hidalgo-Carcedo C, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells[J]. Nat Cell Biol, 2007, 9(12): 1392-1400.
|
[8] |
Hooper S, Gaggioli C, Sahai E. A chemical biology screen reveals a role for Rab21-mediated control of actomyosin contractility in fibroblast-driven cancer invasion[J]. Br J Cancer, 2010, 102(2): 392-402.
|
[9] |
Calon A, Espinet E, Palomo-Ponce S, et al. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation[J]. Cancer Cell, 2012, 22(5): 571-584.
|
[10] |
Calon A, Tauriello DV, Batlle E. TGF-beta in CAF-mediated tumor growth and metastasis[J]. Semin Cancer Biol, 2014, 25: 15-22.
|
[11] |
Shi Y, Gao W, Lytle NK, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring[J]. Nature, 2019, 569(7754): 131-135.
|
[12] |
Cazet AS, Hui MN, Elsworth BL, et al. Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer[J]. Nat Commun, 2018, 9(1): 2897.
|
[13] |
Bruzzese F, Hagglof C, Leone A, et al. Local and systemic protumorigenic effects of cancer-associated fibroblast-derived GDF15[J]. Cancer Res, 2014, 74(13): 3408-3417.
|
[14] |
Bhome R, Goh R, Pickard K, et al. Profiling the MicroRNA Payload of Exosomes Derived from Ex Vivo Primary Colorectal Fibroblasts[J]. Methods Mol Biol, 2017, 1509: 115-122.
|
[15] |
Bhome R, Goh RW, Bullock MD, et al. Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: role in driving cancer progression[J]. Aging (Albany NY), 2017, 9(12): 2666-2694.
|
[16] |
Monteran L, Erez N. The Dark Side of Fibroblasts: Cancer-Associated Fibroblasts as Mediators of Immunosuppression in the Tumor Microenvironment[J]. Front Immunol, 2019, 10: 1835.
|
[17] |
Sanford-Crane H, Abrego J, Sherman MH. Fibroblasts as Modulators of Local and Systemic Cancer Metabolism[J]. Cancers (Basel), 2019, 11(5): 619.
|
[18] |
Bertero T, Oldham WM, Grasset EM, et al. Tumor-Stroma Mechanics Coordinate Amino Acid Availability to Sustain Tumor Growth and Malignancy[J]. Cell Metab, 2019, 29(1): 124-140.e10.
|
[19] |
Liu R, Li J, Xie K, et al. FGFR4 promotes stroma-induced epithelial-to-mesenchymal transition in colorectal cancer[J]. Cancer Res, 2013, 73(19): 5926-5935.
|
[20] |
Ozdemir BC, Pentcheva-Hoang T, Carstens JL, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival[J]. Cancer Cell, 2014, 25(6): 719-734.
|
[21] |
Chanmee T, Ontong P, Konno K, et al. Tumor-associated macrophages as major players in the tumor microenvironment[J]. Cancers (Basel), 2014, 6(3): 1670-1690.
|
[22] |
Kang JC, Chen JS, Lee CH, et al. Intratumoral macrophage counts correlate with tumor progression in colorectal cancer[J]. J Surg Oncol, 2010, 102(3): 242-248.
|
[23] |
Wei C, Yang C, Wang S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1): 64.
|
[24] |
Yang C, Wei C, Wang S, et al. Elevated CD163(+)/CD68(+) Ratio at Tumor Invasive Front is Closely Associated with Aggressive Phenotype and Poor Prognosis in Colorectal Cancer[J]. Int J Biol Sci, 2019, 15(5): 984-998.
|
[25] |
Mantovani A, Cassatella MA, Costantini C, et al. Neutrophils in the activation and regulation of innate and adaptive immunity[J]. Nat Rev Immunol, 2011, 11(8): 519-531.
|
[26] |
Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN[J]. Cancer Cell, 2009, 16(3): 183-194.
|
[27] |
Houghton AM, Rzymkiewicz DM, Ji H, et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth[J]. Nat Med, 2010, 16(2): 219-223.
|
[28] |
Kuang DM, Zhao Q, Wu Y, et al. Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma[J]. J Hepatol, 2011, 54(5): 948-955.
|
[29] |
Wislez M, Rabbe N, Marchal J, et al. Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death[J]. Cancer Res, 2003, 63(6): 1405-1412.
|
[30] |
Hirai H, Fujishita T, Kurimoto K, et al. CCR1-mediated accumulation of myeloid cells in the liver microenvironment promoting mouse colon cancer metastasis[J]. Clin Exp Metastasis, 2014, 31(8): 977-989.
|
[31] |
Itatani Y, Kawada K, Fujishita T, et al. Loss of SMAD4 from colorectal cancer cells promotes CCL15 expression to recruit CCR1+ myeloid cells and facilitate liver metastasis[J]. Gastroenterology, 2013, 145(5): 1064-1075.e11.
|
[32] |
Yamamoto T, Kawada K, Itatani Y, et al. Loss of SMAD4 Promotes Lung Metastasis of Colorectal Cancer by Accumulation of CCR1+ Tumor-Associated Neutrophils through CCL15-CCR1 Axis[J]. Clin Cancer Res, 2017, 23(3): 833-844.
|
[33] |
Pantel K, Speicher MR. The biology of circulating tumor cells[J]. Oncogene, 2016, 35(10): 1216-1224.
|
[34] |
Aceto N, Bardia A, Miyamoto DT, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis[J]. Cell, 2014, 158(5): 1110-1122.
|
[35] |
Cheung KJ, Padmanaban V, Silvestri V, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters[J]. Proc Natl Acad Sci U S A, 2016, 113(7): E854-E863.
|
[36] |
Liu X, Taftaf R, Kawaguchi M, et al. Homophilic CD44 Interactions Mediate Tumor Cell Aggregation and Polyclonal Metastasis in Patient-Derived Breast Cancer Models[J]. Cancer Discov, 2019, 9(1): 96-113.
|
[37] |
Gkountela S, Castro-Giner F, Szczerba BM, et al. Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding[J]. Cell, 2019, 176(1-2): 98-112.e14.
|
[38] |
Hou JM, Krebs M, Ward T, et al. Circulating tumor cells as a window on metastasis biology in lung cancer[J]. Am J Pathol, 2011, 178(3): 989-996.
|
[39] |
Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis[J]. Cancer Cell, 2011, 20(5): 576-590.
|
[40] |
Aceto N, Toner M, Maheswaran S, et al. En Route to Metastasis: Circulating Tumor Cell Clusters and Epithelial-to-Mesenchymal Transition[J]. Trends Cancer, 2015, 1(1): 44-52.
|
[41] |
Duda DG, Duyverman AM, Kohno M, et al. Malignant cells facilitate lung metastasis by bringing their own soil[J]. Proc Natl Acad Sci U S A, 2010, 107(50): 21677-21682.
|
[42] |
Szczerba BM, Castro-Giner F, Vetter M, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression[J]. Nature, 2019, 566(7745): 553-557.
|
[43] |
Grillet F, Bayet E, Villeronce O, et al. Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in ex vivo culture[J]. Gut, 2017, 66(10): 1802-1810.
|
[44] |
Baek DH, Kim GH, Song GA, et al. Clinical Potential of Circulating Tumor Cells in Colorectal Cancer: A Prospective Study[J]. Clin Transl Gastroenterol, 2019, 10(7): e00055.
|
[45] |
Arrazubi V, Mata E, Antelo ML, et al. Circulating Tumor Cells in Patients Undergoing Resection of Colorectal Cancer Liver Metastases. Clinical Utility for Long-Term Outcome: A Prospective Trial[J]. Ann Surg Oncol, 2019, 26(9): 2805-2811.
|
[46] |
Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[J]. Nature, 2005, 438(7069): 820-827.
|
[47] |
Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis[J]. Nature, 2015, 527(7578): 329-335.
|
[48] |
Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver[J]. Nat Cell Biol, 2015, 17(6): 816-826.
|
[49] |
Glinskii OV, Huxley VH, Glinsky GV, et al. Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs[J]. Neoplasia, 2005, 7(5): 522-527.
|
[50] |
Hu CT, Guo LL, Feng N, et al. MIF, secreted by human hepatic sinusoidal endothelial cells, promotes chemotaxis and outgrowth of colorectal cancer in liver prometastasis[J]. Oncotarget, 2015, 6(26): 22410-22423.
|
[51] |
Banerjee D, Hernandez SL, Garcia A, et al. Notch suppresses angiogenesis and progression of hepatic metastases[J]. Cancer Res, 2015, 75(8): 1592-1602.
|
[52] |
Eveno C, Hainaud P, Rampanou A, et al. Proof of prometastatic niche induction by hepatic stellate cells[J]. J Surg Res, 2015, 194(2): 496-504.
|
[53] |
Taura K, De Minicis S, Seki E, et al. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis[J][J]. Gastroenterology, 2008, 135(5): 1729-1738.
|
[54] |
Mook OR, Van Marle J, Jonges R, et al. Interactions between colon cancer cells and hepatocytes in rats in relation to metastasis[J]. J Cell Mol Med, 2008, 12(5b): 2052-2061.
|
[55] |
Radinsky R, Risin S, Fan D, et al. Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells[J]. Clin Cancer Res, 1995, 1(1): 19-31.
|
[56] |
Tabaries S, Annis MG, Hsu BE, et al. Lyn modulates Claudin-2 expression and is a therapeutic target for breast cancer liver metastasis [J]. Oncotarget, 2015, 6(11): 9476-9487.
|
[57] |
Cools-Lartigue J, Spicer J, Mcdonald B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis[J]. J Clin Invest, 2013, 123(8): 3446-3458.
|
[58] |
Najmeh S, Cools-Lartigue J, Rayes RF, et al. Neutrophil extracellular traps sequester circulating tumor cells via beta1-integrin mediated interactions[J]. Int J Cancer, 2017, 140(10): 2321-2330.
|
[59] |
albrengues j, shields ma, ng d, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice[J]. Science, 2018, 361(6409): eaao4227.
|
[60] |
Yang L, Liu Q, Zhang X, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25[J]. Nature, 2020, 583(7814): 133-138.
|