切换至 "中华医学电子期刊资源库"

中华普外科手术学杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 86 -89. doi: 10.3877/cma.j.issn.1674-3946.2024.01.023

综述

神经系统调控胃肠道肿瘤免疫应答研究进展
钱龙, 陆晓峰, 王行舟, 杜峻峰(), 沈晓菲(), 管文贤()   
  1. 210008 南京,南京大学医学院附属鼓楼医院胃外科
    100853 北京,中国人民解放军总医院普通外科医学部普通外科
  • 收稿日期:2023-04-07 出版日期:2024-02-26
  • 通信作者: 杜峻峰, 沈晓菲, 管文贤

Research progress on nervous system regulation of immune response to gastrointestinal tumors

Long Qian, Xiaofeng Lu, Xingzhou Wang, Junfeng Du(), Xiaofei Shen(), Wenxian Guan()   

  1. Department of Gastric Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
    Department of General Surgery, the 7th Medical Center of PLA General Hospital, Beijing 100853, China
  • Received:2023-04-07 Published:2024-02-26
  • Corresponding author: Junfeng Du, Xiaofei Shen, Wenxian Guan
  • Supported by:
    National Natural Science Foundation of China(81870393)
引用本文:

钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.

Long Qian, Xiaofeng Lu, Xingzhou Wang, Junfeng Du, Xiaofei Shen, Wenxian Guan. Research progress on nervous system regulation of immune response to gastrointestinal tumors[J/OL]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2024, 18(01): 86-89.

胃肠道肿瘤是累及全球人群的主要肿瘤病种,现有治疗策略已从过往单纯的靶向肿瘤本身扩展到靶向肿瘤微环境,其中,尤以免疫卡控点分子抑制剂为代表的免疫治疗为最新最热门研究领域,相应治疗手段也在胃肠道肿瘤治疗中逐渐得到广泛应用。然而,免疫治疗获益人群百分率依然相对较低,与胃肠道肿瘤复杂的微环境密切相关。神经系统作为调控免疫应答的重要组成,在肿瘤免疫中的作用也逐渐受到重视。深入探讨神经系统在胃肠道肿瘤免疫应答中的作用,不仅将为全面了解肿瘤免疫调控及免疫治疗策略开发提供帮助,也将为保留迷走神经等保功能手术的开展等提供重要理论依据。本综述,将对相应领域进行系统总结,为全面揭示胃肠道肿瘤免疫应答打下理论基础。

Gastrointestinal tumor is a major tumor disease affecting people all over the world. The existing therapeutic strategies have expanded from simply targeting the tumor itself to targeting the tumor microenvironment in the past. Among them, immunotherapy represented by immune control point molecular inhibitors is the latest and most popular research field, and the corresponding therapeutic means have gradually been widely used in the treatment of gastrointestinal tumor. However, the percentage of people who benefit from immunotherapy is still relatively low, which is closely related to the complex microenvironment of gastrointestinal tumors. As an important component of regulating immune response, the nervous system plays an important role in tumor immunity. An in-depth study of the role of the nervous system in gastrointestinal tumor immune response will not only provide help for a comprehensive understanding of tumor immune regulation and the development of immunotherapy strategies, but also provide an important theoretical basis for the development of functional surgery such as vagus nerve preservation. In this review, the relevant fields will be systematically summarized to lay a theoretical foundation for revealing the immune response of gastrointestinal tumors.

[1]
韦静涛,季鑫,季加孚. 不断提高中国胃癌外科手术治疗规范化[J/CD]. 中华普外科手术学杂志(电子版), 2022, 16(03): 237–241.
[2]
Sung HFerlay JSiegel RL,et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209–249.
[3]
陈凛,李少卿,张珂诚. 中国腹腔镜胃癌手术20年回顾与展望[J/CD]. 中华普外科手术学杂志(电子版), 2021, 15(02): 119–122.
[4]
陈纲,吕远,李世拥. 腹腔镜胃癌根治术需关注的几个问题[J/CD]. 中华普外科手术学杂志(电子版), 2022, 16(03): 251–254.
[5]
Vaes NIdris MBoesmans W,et al. Nerves in gastrointestinal cancer: from mechanism to modulations[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(12): 768–784.
[6]
Oya YHayakawa YKoike K. Tumor microenvironment in gastric cancers[J]. Cancer Sci, 2020, 111(8): 2696–2707.
[7]
Szeliga ARudnicka EMaciejewska-Jeske M,et al. Neuroendocrine Determinants of Polycystic Ovary Syndrome[J]. Int J Environ Res Public Health, 2022, 19(5): 3089.
[8]
Kraft ROMyers JOverton S,et al. Vagotomy and the gastric ulcer[J]. The American Journal of Surgery, 1971, 121(2): 122–128.
[9]
Kamiya AHiyama TFujimura A,et al. Sympathetic and parasympathetic innervation in cancer: therapeutic implications[J]. Clin Auton Res, 2021, 31(2): 165–178.
[10]
Wang KZhao XHLiu J,et al. Nervous system and gastric cancer[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(1): 188313.
[11]
Bakst RLGlastonbury CMParvathaneni U,et al. Perineural Invasion and Perineural Tumor Spread in Head and Neck Cancer[J]. Int J Radiat Oncol Biol Phys, 2019, 103(5): 1109–1124.
[12]
Jiang SHZhang SWang H,et al. Emerging experimental models for assessing perineural invasion in human cancers[J]. Cancer Lett, 2022, 535: 215610.
[13]
Liu QMa ZCao Q,et al. Perineural invasion-associated biomarkers for tumor development[J]. Biomed Pharmacother, 2022, 155: 113691.
[14]
Schledwitz AXie GRaufman JP. Exploiting unique features of the gut-brain interface to combat gastrointestinal cancer[J]. J Clin Invest, 2021, 131(10): e143776.
[15]
Wang LXu JXia Y,et al. Muscarinic acetylcholine receptor 3 mediates vagus nerve-induced gastric cancer[J]. Oncogenesis, 2018, 7(11): 88.
[16]
Hering NALiu VKim R,et al. Blockage of Cholinergic Signaling via Muscarinic Acetylcholine Receptor 3 Inhibits Tumor Growth in Human Colorectal Adenocarcinoma[J]. Cancers(Basel), 2021, 13(13): 3220.
[17]
Yu HXia HTang Q,et al. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation[J]. Sci Rep, 2017, 7: 40802.
[18]
Nie MChen NPang H,et al. Targeting acetylcholine signaling modulates persistent drug tolerance in EGFR-mutant lung cancer and impedes tumor relapse[J]. J Clin Invest, 2022, 132(20): e160152.
[19]
Hayakawa YSakitani KKonishi M,et al. Nerve Growth Factor Promotes Gastric Tumorigenesis through Aberrant Cholinergic Signaling[J]. Cancer Cell, 2017, 31(1): 21–34.
[20]
Kuol NStojanovska LApostolopoulos V,et al. Crosstalk between cancer and the neuro-immune system[J]. J Neuroimmunol, 2018, 315: 15–23.
[21]
崔伟,李涛,李世拥. 中国腹腔镜胃癌手术20年历程与成就[J/CD]. 中华普外科手术学杂志(电子版), 2021, 15(02): 139–142.
[22]
Zhang XZhang YHe Z,et al. Chronic stress promotes gastric cancer progression and metastasis: an essential role for ADRB2[J]. Cell Death Dis, 2019, 10(11): 788.
[23]
Silva DQuintas CGoncalves J,et al. Contribution of adrenergic mechanisms for the stress-induced breast cancer carcinogenesis[J]. J Cell Physiol, 2022, 237(4): 2107–2127.
[24]
Batalla-Covello JAli SXie T,et al. beta-Adrenergic signaling in skin cancer[J]. FASEB Bioadv, 2022, 4(4): 225–234.
[25]
Zhi XLi BLi Z,et al. Adrenergic modulation of AMPK‑dependent autophagy by chronic stress enhances cell proliferation and survival in gastric cancer[J]. Int J Oncol, 2019, 54(5): 1625–1638.
[26]
Shi MLiu DDuan H,et al. Catecholamine up-regulates MMP-7 expression by activating AP-1 and STAT3 in gastric cancer[J]. Mol Cancer, 2010, 9: 269.
[27]
Ogawa HKaira KMotegi Y,et al. Prognostic significance of beta2-adrenergic receptor expression in patients with surgically resected colorectal cancer[J]. Int J Clin Oncol, 2020, 25(6): 1137–1144.
[28]
Bucsek MJQiao GMacDonald CR,et al. β-Adrenergic Signaling in Mice Housed at Standard Temperatures Suppresses an Effector Phenotype in CD8(+)T Cells and Undermines Checkpoint Inhibitor Therapy[J]. Cancer Res, 2017, 77(20): 5639–5651.
[29]
Chen JLi JQiao H,et al. Disruption of IDO signaling pathway alleviates chronic unpredictable mild stress-induced depression-like behaviors and tumor progression in mice with breast cancer[J]. Cytokine, 2023, 162: 156115.
[30]
Huang DWang YThompson JW,et al. Cancer-cell-derived GABA promotes beta-catenin-mediated tumour growth and immunosuppression[J]. Nat Cell Biol, 2022, 24(2): 230–241.
[31]
Hanahan DMonje M. Cancer hallmarks intersect with neuroscience in the tumor microenvironment[J]. Cancer Cell, 2023, 41(3): 573–580.
[32]
Bruno FArcuri DVozzo F,et al. Expression and Signaling Pathways of Nerve Growth Factor(NGF)and Pro-NGF in Breast Cancer: A Systematic Review[J]. Curr Oncol, 2022, 29(11): 8103–8120.
[33]
Lei YHe XHuang H,et al. Nerve growth factor orchestrates NGAL and matrix metalloproteinases activity to promote colorectal cancer metastasis[J]. Clin Transl Oncol, 2022, 24(1): 34–47.
[34]
Ghatak SMehrabi SFMehdawi LM,et al. Identification of a Novel Five-Gene Signature as a Prognostic and Diagnostic Biomarker in Colorectal Cancers[J]. Int J Mol Sci, 2022, 23(2).
[35]
Allen JKArmaiz-Pena GNNagaraja AS,et al. Sustained Adrenergic Signaling Promotes Intratumoral Innervation through BDNF Induction[J]. Cancer Res, 2018, 78(12): 3233–3242.
[36]
Park GBChoi SYoon YS,et al. TrkB/C-induced HOXC6 activation enhances the ADAM8-mediated metastasis of chemoresistant colon cancer cells[J]. Mol Med Rep, 2021, 23(6).
[37]
Zahalka AHFrenette PS. Nerves in cancer[J]. Nat Rev Cancer, 2020, 20(3): 143–157.
[38]
Chen DZhang XLi Z,et al. Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages[J]. Theranostics, 2021, 11(3): 1016–1030.
[39]
Mehla KSingh PK. Metabolic Regulation of Macrophage Polarization in Cancer[J]. Trends Cancer. 2019, 5(12): 822–834.
[40]
Mantovani AAllavena PSica A,et al. Cancer-related inflammation[J]. Nature, 2008, 454(7203): 436–444.
[41]
Cortese NRigamonti AMantovani A,et al. The neuro-immune axis in cancer: Relevance of the peripheral nervous system to the disease[J]. Immunol Lett, 2020, 227: 60–65.
[42]
Zhang NCao MDuan Y,et al. Prognostic role of tumor-infiltrating lymphocytes in gastric cancer: a meta-analysis and experimental validation[J]. Arch Med Sci, 2020, 16(5): 1092–1103.
[43]
Qiao GBucsek MJWinder NM,et al. beta-Adrenergic signaling blocks murine CD8(+)T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress[J]. Cancer Immunol Immunother, 2019, 68(1): 11–22.
[44]
Dai SMo YWang Y,et al. Chronic Stress Promotes Cancer Development[J]. Front Oncol, 2020, 10: 1492.
[45]
Wu YYuan MWang C,et al. T lymphocyte cell: A pivotal player in lung cancer[J]. Front Immunol, 2023, 14: 1102778.
[46]
Laumont CMBanville ACGilardi M,et al. Tumour-infiltrating B cells: immunological mechanisms,clinical impact and therapeutic opportunities[J]. Nat Rev Cancer, 2022, 22(7): 414–430.
[1] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[2] 王浩元, 王舒, 王娟, 杨建军. 基于类器官模型探索肠道与肠道菌群间相互关系的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 220-224.
[3] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[4] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[5] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[6] 李维坤, 邵欣欣, 胡海涛, 卢一鸣, 王鹏, 杜永星, 徐泉, 田艳涛. 腹腔镜胃间质瘤手术切除策略分析[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(03): 141-145.
[7] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[8] 程亚飞, 郭航. 中枢神经系统AQP4的调节机制研究进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 48-54.
[9] 张钊龙, 郑卉, 赵丹阳, 赵悰怡, 刘之琪, 张优佳, 秦秉玉. 趋化因子CXC配体13在中枢神经系统感染中的意义及相关研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 54-59.
[10] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[11] 马虹宇, 陈元武, 张明明, 岳向勇, 檀碧波. 平胃散加味联合毫火针对直肠癌患者化学治疗致胃肠道反应的疗效[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 297-300.
[12] 张可, 闫琳琳, 王鹏飞, 章秀林, 赵帆, 胡守奎. 外泌体环状RNA在肿瘤免疫和癌症免疫治疗中的作用[J/OL]. 中华临床医师杂志(电子版), 2023, 17(10): 1102-1108.
[13] 徐来英, 程效, 戴亨纷, 侯俊凉, 苏怡林, 张彦. 药物联合个体化精准恒定功率运动疗法治疗心肌梗死术后频发室性早搏一例[J/OL]. 中华心脏与心律电子杂志, 2024, 12(03): 176-179.
[14] 王婉杰, 宋文超, 王键, 倪良晨, 洪健, 朱孝成, 姚立彬. 肥胖与中枢神经系统调控的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 108-112.
[15] 马妍, 马新然, 叶珊, 樊东升, 傅瑜. 器官系统整合课教学模式在临床医学八年制学生神经系统见习中的应用效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 360-364.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?