切换至 "中华医学电子期刊资源库"

中华普外科手术学杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 86 -89. doi: 10.3877/cma.j.issn.1674-3946.2024.01.023

综述

神经系统调控胃肠道肿瘤免疫应答研究进展
钱龙, 陆晓峰, 王行舟, 杜峻峰(), 沈晓菲(), 管文贤()   
  1. 210008 南京,南京大学医学院附属鼓楼医院胃外科
    100853 北京,中国人民解放军总医院普通外科医学部普通外科
  • 收稿日期:2023-04-07 出版日期:2024-02-26
  • 通信作者: 杜峻峰, 沈晓菲, 管文贤

Research progress on nervous system regulation of immune response to gastrointestinal tumors

Long Qian, Xiaofeng Lu, Xingzhou Wang, Junfeng Du(), Xiaofei Shen(), Wenxian Guan()   

  1. Department of Gastric Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
    Department of General Surgery, the 7th Medical Center of PLA General Hospital, Beijing 100853, China
  • Received:2023-04-07 Published:2024-02-26
  • Corresponding author: Junfeng Du, Xiaofei Shen, Wenxian Guan
  • Supported by:
    National Natural Science Foundation of China(81870393)
引用本文:

钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.

Long Qian, Xiaofeng Lu, Xingzhou Wang, Junfeng Du, Xiaofei Shen, Wenxian Guan. Research progress on nervous system regulation of immune response to gastrointestinal tumors[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2024, 18(01): 86-89.

胃肠道肿瘤是累及全球人群的主要肿瘤病种,现有治疗策略已从过往单纯的靶向肿瘤本身扩展到靶向肿瘤微环境,其中,尤以免疫卡控点分子抑制剂为代表的免疫治疗为最新最热门研究领域,相应治疗手段也在胃肠道肿瘤治疗中逐渐得到广泛应用。然而,免疫治疗获益人群百分率依然相对较低,与胃肠道肿瘤复杂的微环境密切相关。神经系统作为调控免疫应答的重要组成,在肿瘤免疫中的作用也逐渐受到重视。深入探讨神经系统在胃肠道肿瘤免疫应答中的作用,不仅将为全面了解肿瘤免疫调控及免疫治疗策略开发提供帮助,也将为保留迷走神经等保功能手术的开展等提供重要理论依据。本综述,将对相应领域进行系统总结,为全面揭示胃肠道肿瘤免疫应答打下理论基础。

Gastrointestinal tumor is a major tumor disease affecting people all over the world. The existing therapeutic strategies have expanded from simply targeting the tumor itself to targeting the tumor microenvironment in the past. Among them, immunotherapy represented by immune control point molecular inhibitors is the latest and most popular research field, and the corresponding therapeutic means have gradually been widely used in the treatment of gastrointestinal tumor. However, the percentage of people who benefit from immunotherapy is still relatively low, which is closely related to the complex microenvironment of gastrointestinal tumors. As an important component of regulating immune response, the nervous system plays an important role in tumor immunity. An in-depth study of the role of the nervous system in gastrointestinal tumor immune response will not only provide help for a comprehensive understanding of tumor immune regulation and the development of immunotherapy strategies, but also provide an important theoretical basis for the development of functional surgery such as vagus nerve preservation. In this review, the relevant fields will be systematically summarized to lay a theoretical foundation for revealing the immune response of gastrointestinal tumors.

[1]
韦静涛,季鑫,季加孚. 不断提高中国胃癌外科手术治疗规范化[J/CD]. 中华普外科手术学杂志(电子版), 2022, 16(03): 237–241.
[2]
Sung HFerlay JSiegel RL,et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209–249.
[3]
陈凛,李少卿,张珂诚. 中国腹腔镜胃癌手术20年回顾与展望[J/CD]. 中华普外科手术学杂志(电子版), 2021, 15(02): 119–122.
[4]
陈纲,吕远,李世拥. 腹腔镜胃癌根治术需关注的几个问题[J/CD]. 中华普外科手术学杂志(电子版), 2022, 16(03): 251–254.
[5]
Vaes NIdris MBoesmans W,et al. Nerves in gastrointestinal cancer: from mechanism to modulations[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(12): 768–784.
[6]
Oya YHayakawa YKoike K. Tumor microenvironment in gastric cancers[J]. Cancer Sci, 2020, 111(8): 2696–2707.
[7]
Szeliga ARudnicka EMaciejewska-Jeske M,et al. Neuroendocrine Determinants of Polycystic Ovary Syndrome[J]. Int J Environ Res Public Health, 2022, 19(5): 3089.
[8]
Kraft ROMyers JOverton S,et al. Vagotomy and the gastric ulcer[J]. The American Journal of Surgery, 1971, 121(2): 122–128.
[9]
Kamiya AHiyama TFujimura A,et al. Sympathetic and parasympathetic innervation in cancer: therapeutic implications[J]. Clin Auton Res, 2021, 31(2): 165–178.
[10]
Wang KZhao XHLiu J,et al. Nervous system and gastric cancer[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(1): 188313.
[11]
Bakst RLGlastonbury CMParvathaneni U,et al. Perineural Invasion and Perineural Tumor Spread in Head and Neck Cancer[J]. Int J Radiat Oncol Biol Phys, 2019, 103(5): 1109–1124.
[12]
Jiang SHZhang SWang H,et al. Emerging experimental models for assessing perineural invasion in human cancers[J]. Cancer Lett, 2022, 535: 215610.
[13]
Liu QMa ZCao Q,et al. Perineural invasion-associated biomarkers for tumor development[J]. Biomed Pharmacother, 2022, 155: 113691.
[14]
Schledwitz AXie GRaufman JP. Exploiting unique features of the gut-brain interface to combat gastrointestinal cancer[J]. J Clin Invest, 2021, 131(10): e143776.
[15]
Wang LXu JXia Y,et al. Muscarinic acetylcholine receptor 3 mediates vagus nerve-induced gastric cancer[J]. Oncogenesis, 2018, 7(11): 88.
[16]
Hering NALiu VKim R,et al. Blockage of Cholinergic Signaling via Muscarinic Acetylcholine Receptor 3 Inhibits Tumor Growth in Human Colorectal Adenocarcinoma[J]. Cancers(Basel), 2021, 13(13): 3220.
[17]
Yu HXia HTang Q,et al. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation[J]. Sci Rep, 2017, 7: 40802.
[18]
Nie MChen NPang H,et al. Targeting acetylcholine signaling modulates persistent drug tolerance in EGFR-mutant lung cancer and impedes tumor relapse[J]. J Clin Invest, 2022, 132(20): e160152.
[19]
Hayakawa YSakitani KKonishi M,et al. Nerve Growth Factor Promotes Gastric Tumorigenesis through Aberrant Cholinergic Signaling[J]. Cancer Cell, 2017, 31(1): 21–34.
[20]
Kuol NStojanovska LApostolopoulos V,et al. Crosstalk between cancer and the neuro-immune system[J]. J Neuroimmunol, 2018, 315: 15–23.
[21]
崔伟,李涛,李世拥. 中国腹腔镜胃癌手术20年历程与成就[J/CD]. 中华普外科手术学杂志(电子版), 2021, 15(02): 139–142.
[22]
Zhang XZhang YHe Z,et al. Chronic stress promotes gastric cancer progression and metastasis: an essential role for ADRB2[J]. Cell Death Dis, 2019, 10(11): 788.
[23]
Silva DQuintas CGoncalves J,et al. Contribution of adrenergic mechanisms for the stress-induced breast cancer carcinogenesis[J]. J Cell Physiol, 2022, 237(4): 2107–2127.
[24]
Batalla-Covello JAli SXie T,et al. beta-Adrenergic signaling in skin cancer[J]. FASEB Bioadv, 2022, 4(4): 225–234.
[25]
Zhi XLi BLi Z,et al. Adrenergic modulation of AMPK‑dependent autophagy by chronic stress enhances cell proliferation and survival in gastric cancer[J]. Int J Oncol, 2019, 54(5): 1625–1638.
[26]
Shi MLiu DDuan H,et al. Catecholamine up-regulates MMP-7 expression by activating AP-1 and STAT3 in gastric cancer[J]. Mol Cancer, 2010, 9: 269.
[27]
Ogawa HKaira KMotegi Y,et al. Prognostic significance of beta2-adrenergic receptor expression in patients with surgically resected colorectal cancer[J]. Int J Clin Oncol, 2020, 25(6): 1137–1144.
[28]
Bucsek MJQiao GMacDonald CR,et al. β-Adrenergic Signaling in Mice Housed at Standard Temperatures Suppresses an Effector Phenotype in CD8(+)T Cells and Undermines Checkpoint Inhibitor Therapy[J]. Cancer Res, 2017, 77(20): 5639–5651.
[29]
Chen JLi JQiao H,et al. Disruption of IDO signaling pathway alleviates chronic unpredictable mild stress-induced depression-like behaviors and tumor progression in mice with breast cancer[J]. Cytokine, 2023, 162: 156115.
[30]
Huang DWang YThompson JW,et al. Cancer-cell-derived GABA promotes beta-catenin-mediated tumour growth and immunosuppression[J]. Nat Cell Biol, 2022, 24(2): 230–241.
[31]
Hanahan DMonje M. Cancer hallmarks intersect with neuroscience in the tumor microenvironment[J]. Cancer Cell, 2023, 41(3): 573–580.
[32]
Bruno FArcuri DVozzo F,et al. Expression and Signaling Pathways of Nerve Growth Factor(NGF)and Pro-NGF in Breast Cancer: A Systematic Review[J]. Curr Oncol, 2022, 29(11): 8103–8120.
[33]
Lei YHe XHuang H,et al. Nerve growth factor orchestrates NGAL and matrix metalloproteinases activity to promote colorectal cancer metastasis[J]. Clin Transl Oncol, 2022, 24(1): 34–47.
[34]
Ghatak SMehrabi SFMehdawi LM,et al. Identification of a Novel Five-Gene Signature as a Prognostic and Diagnostic Biomarker in Colorectal Cancers[J]. Int J Mol Sci, 2022, 23(2).
[35]
Allen JKArmaiz-Pena GNNagaraja AS,et al. Sustained Adrenergic Signaling Promotes Intratumoral Innervation through BDNF Induction[J]. Cancer Res, 2018, 78(12): 3233–3242.
[36]
Park GBChoi SYoon YS,et al. TrkB/C-induced HOXC6 activation enhances the ADAM8-mediated metastasis of chemoresistant colon cancer cells[J]. Mol Med Rep, 2021, 23(6).
[37]
Zahalka AHFrenette PS. Nerves in cancer[J]. Nat Rev Cancer, 2020, 20(3): 143–157.
[38]
Chen DZhang XLi Z,et al. Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages[J]. Theranostics, 2021, 11(3): 1016–1030.
[39]
Mehla KSingh PK. Metabolic Regulation of Macrophage Polarization in Cancer[J]. Trends Cancer. 2019, 5(12): 822–834.
[40]
Mantovani AAllavena PSica A,et al. Cancer-related inflammation[J]. Nature, 2008, 454(7203): 436–444.
[41]
Cortese NRigamonti AMantovani A,et al. The neuro-immune axis in cancer: Relevance of the peripheral nervous system to the disease[J]. Immunol Lett, 2020, 227: 60–65.
[42]
Zhang NCao MDuan Y,et al. Prognostic role of tumor-infiltrating lymphocytes in gastric cancer: a meta-analysis and experimental validation[J]. Arch Med Sci, 2020, 16(5): 1092–1103.
[43]
Qiao GBucsek MJWinder NM,et al. beta-Adrenergic signaling blocks murine CD8(+)T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress[J]. Cancer Immunol Immunother, 2019, 68(1): 11–22.
[44]
Dai SMo YWang Y,et al. Chronic Stress Promotes Cancer Development[J]. Front Oncol, 2020, 10: 1492.
[45]
Wu YYuan MWang C,et al. T lymphocyte cell: A pivotal player in lung cancer[J]. Front Immunol, 2023, 14: 1102778.
[46]
Laumont CMBanville ACGilardi M,et al. Tumour-infiltrating B cells: immunological mechanisms,clinical impact and therapeutic opportunities[J]. Nat Rev Cancer, 2022, 22(7): 414–430.
[1] 丁妍, 文华轩, 陈芷萱, 曾晴, 张梦雨, 廖伊梅, 罗丹丹, 秦越, 梁美玲, 邹于, 李胜利. 胎儿小脑皮质发育不良的产前超声诊断[J]. 中华医学超声杂志(电子版), 2023, 20(03): 255-264.
[2] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[3] 李玉静, 陈七一, 谢汝明, 陈步东. 获得性免疫缺陷综合征相关原发性中枢神经系统淋巴瘤的预后研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 200-208.
[4] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[5] 张琴琴, 王俊楠, 林厚民, 伍莹, 谭月梅, 李明洲, 金俊飞, 王宁霞, 洪勇. 补体3在乳腺癌中的表达差异及临床意义的生物信息学分析[J]. 中华普通外科学文献(电子版), 2023, 17(04): 271-277.
[6] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[7] 郑泽坤, 戴勇, 陈卓, 吴巍. 根治性手术切除罕见的巨大胃肠间质瘤一例[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 235-236.
[8] 肖庆, 王诚, 周焜, 魏宜功. 脑-机接口的技术原理及临床应用[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 241-245.
[9] 吴绍伟. 迷走神经电刺激术治疗神经系统疾病的应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 180-184.
[10] 杨团峰, 王艳香, 刘献增. 球海绵体肌反射在神经系统疾病中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 600-604.
[11] 孟智宏. 醒脑开窍针刺法治疗多系统疾病的机制研究现状[J]. 中华针灸电子杂志, 2023, 12(04): 142-145.
[12] 肖莹莹, 田茵琦, 彭雪梅. 减重手术胃肠道血流量下降的原因及干预措施[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 179-185.
[13] 李安, 张秀萍, 白波, 赵阳, 薛国芳, 李东芳. 主动脉夹层术后并发神经系统并发症二例及文献复习[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 373-378.
[14] 韩佳熙, 范向民, 苏宁. 数字技术评估方法在神经系统运动障碍诊疗中应用的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 275-279.
[15] 李卓然, 胡文立. 内皮功能、炎症、神经系统退行性疾病的生物标志物与小动脉硬化型CSVD的关联[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 57-60.
阅读次数
全文


摘要