切换至 "中华医学电子期刊资源库"

中华普外科手术学杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 468 -472. doi: 10.3877/cma.j.issn.1674-3946.2021.04.032

综述

一碳单位的代谢与结直肠癌关系的研究进展
党学宁1, 陈潇健1, 崔龙1,()   
  1. 1. 200092 上海,上海交通大学医学院附属新华医院肛肠外科
  • 收稿日期:2020-06-10 出版日期:2021-08-17
  • 通信作者: 崔龙

Research progress on the relationship between one carbon metabolism and colorectal cancer

Xuening Dang1, Xiaojian Chen1, Long Cui1,()   

  1. 1. Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
  • Received:2020-06-10 Published:2021-08-17
  • Corresponding author: Long Cui
  • Supported by:
    National Nature Science Foundation of China(81974060)
引用本文:

党学宁, 陈潇健, 崔龙. 一碳单位的代谢与结直肠癌关系的研究进展[J]. 中华普外科手术学杂志(电子版), 2021, 15(04): 468-472.

Xuening Dang, Xiaojian Chen, Long Cui. Research progress on the relationship between one carbon metabolism and colorectal cancer[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2021, 15(04): 468-472.

一碳单位可用来进行核苷酸合成、底物甲基化和还原代谢,而包括丝氨酸代谢、甘氨酸代谢、甲硫氨酸循环以及叶酸循环在内的一碳单位的代谢则维持了细胞内的稳态及遗传稳定性,并在一定程度上支持了肿瘤的发生发展。结直肠癌是一种常见但发病机制尚不明确的恶性肿瘤,有着极高的发病率和死亡率。近来众多研究表明,一碳单位的代谢与结直肠癌关系密切,而且其代谢相关基因、代谢原料及代谢产物也已成为新的肿瘤诊断、预后标志物和治疗靶点。本文就一碳单位代谢与结直肠癌关系的研究进展进行综述,为后续研究提供参考依据。

One carbon unit can be used for nucleotide synthesis, substrate methylation and reductionism, while one carbon metabolism, including serine metabolism, glycine metabolism, methionine cycle and folic acid cycle, maintains intracellular homeostasis and genetic stability, and to a certain extent support the tumorigenesis and development of cancer. Colorectal cancer (CRC) is a common but unclear malignant tumor with a high morbidity and mortality. Many recent studies have shown that the one carbon metabolism is closely related to colorectal cancer, and its metabolism-related genes, metabolic substrates and metabolites have also become new tumor diagnostic markers, prognostic markers and therapeutic targets. Therefore, this article reviews the research progress on the relationship between one-carbon metabolism and colorectal cancer, providing insight for the further research.

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA: a cancer journal for clinicians 2020, 70(1): 7-30.
[2]
Siegel RL, Miller KD, Jemal A. Colorectal cancer statistics, 2017[J]. CA: a cancer journal for clinicians 2017, 67: 7-30.
[3]
Siegel RL, Torre LA, Soerjomataram I, et al. Global patterns and trends in colorectal cancer incidence in young adults[J]. Gut, 2019, 68(12): 2179-2185.
[4]
Tibbetts AS, Appling DR. Compartmentalization of Mammalian folate-mediated one-carbon metabolism[J]. Annu Rev Nutr, 2010, 30: 57-81.
[5]
Ducker GS, Rabinowitz JD. One-Carbon Metabolism in Health and Disease[J]. Cell metab, 2017, 25(1): 27-42.
[6]
Mattaini KR, Sullivan MR, Vander Heiden MG. The importance of serine metabolism in cancer[J]. J Cell Biol, 2016, 214(3): 249-257.
[7]
Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid[J]. N Engl J Med, 1948, 238(23): 787-793.
[8]
Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle[J]. Nat Rev Cancer, 2013, 13(8): 572-583.
[9]
Vie N, Copois V, Bascoul-Mollevi C, et al. Overexpression of phosphoserine aminotransferase PSAT1 stimulates cell growth and increases chemoresistance of colon cancer cells[J]. Mol Cancer, 2008, 7: 14.
[10]
Qian C, Xia Y, Ren Y, et al. Identification and validation of PSAT1 as a potential prognostic factor for predicting clinical outcomes in patients with colorectal carcinoma[J]. Oncol lett, 2017, 14(6): 8014-8020.
[11]
Gylfe AE, Katainen R, Kondelin J, et al. Eleven candidate susceptibility genes for common familial colorectal cancer[J]. PLoS Genet, 2013, 9(10): e1003876.
[12]
Sato K, Masuda T, Hu Q, et al. Phosphoserine Phosphatase Is a Novel Prognostic Biomarker on Chromosome 7 in Colorectal Cancer[J]. Anticancer Res, 2017, 37(5): 2365-2371.
[13]
Li X, Xun Z, Yang Y. Inhibition of phosphoserine phosphatase enhances the anticancer efficacy of 5-fluorouracil in colorectal cancer[J]. Biochem Biophys Res Commun, 2016, 477(4): 633-639.
[14]
Reid MA, Allen AE, Liu S, et al. Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism[J]. Nat Commun, 2018, 9(1): 5442.
[15]
Dong JK, Lei HM, Liang Q, et al. Overcoming erlotinib resistance in EGFR mutation-positive lung adenocarcinomas through repression of phosphoglycerate dehydrogenase[J]. Theranostics, 2018, 8(7): 1808-1823.
[16]
Possemato R, Marks KM, Shaul YD, et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer[J]. Nature, 2011, 476(7360): 346-350.
[17]
Sullivan MR, Mattaini KR, Dennstedt EA, et al. Increased Serine Synthesis Provides an Advantage for Tumors Arising in Tissues Where Serine Levels Are Limiting[J]. Cell Metab, 2019, 29(6): 1410-1421.e4.
[18]
Pacold ME, Brimacombe KR, Chan SH, et al. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate[J]. Nat Chem Biol, 2016, 12(6): 452-458.
[19]
Jia X-Q, Zhang S, Zhu H-J, et al. Increased Expression of PHGDH and Prognostic Significance in Colorectal Cancer[J]. Transl Oncol, 2016, 9(3): 191-196.
[20]
Labuschagne CF, van den Broek NJF, Mackay GM, et al. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells[J]. Cell Rep, 2014, 7(4): 1248-1258.
[21]
Maddocks ODK, Berkers CR, Mason SM, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells[J]. Nature, 2013, 493(7433): 542-546.
[22]
Maddocks ODK, Labuschagne CF, Adams PD, et al. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells[J]. Mol Cell, 2016, 61(2): 210-221.
[23]
Macfarlane AJ, Perry CA, McEntee MF, et al. Shmt1 heterozygosity impairs folate-dependent thymidylate synthesis capacity and modifies risk of Apc(min)-mediated intestinal cancer risk[J]. Cancer Res, 2011, 71(6): 2098-2107.
[24]
Komlosi V, Hitre E, Pap E, et al. SHMT1 1420 and MTHFR 677 variants are associated with rectal but not colon cancer[J]. BMC Cancer, 2010, 10: 525.
[25]
Pabalan N, Jarjanazi H, Ozcelik H. A meta-analysis of the C1420T polymorphism in cytosolic serine hydroxymethyltransferase (SHMT1) among Caucasian colorectal cancer populations[J]. Int J Colorectal Dis, 2013, 28(7): 925-932.
[26]
Theodoratou E, Farrington SM, Tenesa A, et al. Dietary vitamin B6 intake and the risk of colorectal cancer[J]. Cancer Epidemiol Biomarkers Prev, 2008, 17(1): 171-182.
[27]
Gylling B, Myte R, Schneede J, et al. Vitamin B-6 and colorectal cancer risk: a prospective population-based study using 3 distinct plasma markers of vitamin B-6 status[J]. Am J Clin Nutr, 2017, 105(4): 897-904.
[28]
Gylling B, Myte R, Ulvik A, et al. One-carbon metabolite ratios as functional B-vitamin markers and in relation to colorectal cancer risk[J]. Int J Cancer, 2019, 144(5): 947-956.
[29]
Bruns H, Kazanavicius D, Schultze D, et al. Glycine inhibits angiogenesis in colorectal cancer: role of endothelial cells[J]. Amino Acids, 2016, 48(11): 2549-2558.
[30]
Terasaki M, Mima M, Kudoh S, et al. Glycine and succinic acid are effective indicators of the suppression of epithelial-mesenchymal transition by fucoxanthinol in colorectal cancer stem-like cells[J]. Oncol Rep, 2018, 40(1): 414-424.
[31]
Ye J, Fan J, Venneti S, et al. Serine catabolism regulates mitochondrial redox control during hypoxia[J]. Cancer Discov, 2014, 4(12): 1406-1417.
[32]
Ducker GS, Chen L, Morscher RJ, et al. Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway[J]. Cell Metab, 2016, 23(6): 1140-1153.
[33]
Wei Z, Song J, Wang G, et al. Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis[J]. Nat Commun, 2018, 9(1): 4468.
[34]
Rai A, Greening DW, Chen M, et al. Exosomes Derived from Human Primary and Metastatic Colorectal Cancer Cells Contribute to Functional Heterogeneity of Activated Fibroblasts by Reprogramming Their Proteome[J]. Proteomics, 2019, 19(8): e1800148.
[35]
Ueland PM. Choline and betaine in health and disease[J]. J Inherit Metab Dis, 2011, 34(1): 3-15.
[36]
Nitter M, Norgard B, de Vogel S, et al. Plasma methionine, choline, betaine, and dimethylglycine in relation to colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) [J]. Ann Oncol, 2014, 25(8): 1609-1615.
[37]
Kikuchi G, Motokawa Y, Yoshida T, et al. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proceedings of the Japan Academy[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2008, 84(7): 246-263.
[38]
Mentch SJ, Mehrmohamadi M, Huang L, et al. Histone Methylation Dynamics and Gene Regulation Occur through the Sensing of One-Carbon Metabolism[J]. Cell Metab, 2015, 22(5): 861-873.
[39]
Okugawa Y, Grady WM, Goel A. Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers[J]. Gastroenterology, 2015, 149(5): 1204-1225.
[40]
Draht MXG, Goudkade D, Koch A, et al. Prognostic DNA methylation markers for sporadic colorectal cancer: a systematic review[J]. Clin Epigenetics, 2018, 10: 35.
[41]
Gai W, Ji L, Lam WKJ, et al. Liver- and Colon-Specific DNA Methylation Markers in Plasma for Investigation of Colorectal Cancers with or without Liver Metastases[J]. Clin Chem, 2018, 64(8): 1239-1249.
[42]
Tse JWT, Jenkins LJ, Chionh F, et al. Aberrant DNA Methylation in Colorectal Cancer: What Should We Target? [J]. Trends cancer, 2017, 3(10): 698-712.
[43]
Li TWH, Yang H, Peng H, et al. Effects of S-adenosylmethionine and methylthioadenosine on inflammation-induced colon cancer in mice[J]. Carcinogenesis, 2012, 33(2): 427-435.
[44]
Li TWH, Peng H, Yang H, et al. S-Adenosylmethionine and methylthioadenosine inhibit β-catenin signaling by multiple mechanisms in liver and colon cancer[J]. Mol Pharmacol, 2015, 87(1): 77-86.
[45]
Liu Z, Cui C, Wang X, et al. Plasma Levels of Homocysteine and the Occurrence and Progression of Rectal Cancer[J]. Med Sci Monit, 2018, 24: 1776-1783.
[46]
Giannoni E, Buricchi F, Raugei G, et al. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth[J]. Mol Cell Biol, 2005, 25(15): 6391-6403.
[47]
Yee C, Yang W, Hekimi S. The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C[J]. Cell, 2014, 157(4): 897-909.
[48]
Lin S, Li Y, Zamyatnin AA Jr, et al. Reactive oxygen species and colorectal cancer[J]. J Cell Physiol, 2018, 233(7): 5119-5132.
[49]
Ser Z, Gao X, Johnson C, et al. Targeting One Carbon Metabolism with an Antimetabolite Disrupts Pyrimidine Homeostasis and Induces Nucleotide Overflow[J]. Cell Rep, 2016, 15(11): 2367-2376.
[50]
DeVita VT Jr, Chu E. A history of cancer chemotherapy[J]. Cancer Res, 2008, 68(21): 8643-8653.
[51]
Gustavsson B, Carlsson G, Machover D, et al. A review of the evolution of systemic chemotherapy in the management of colorectal cancer[J]. Clin Colorectal Cancer, 2015, 14(1): 1-10.
[52]
McQuade RM, Stojanovska V, Bornstein JC, et al. Colorectal Cancer Chemotherapy: The Evolution of Treatment and New Approaches[J]. Curr Med Chem, 2017, 24(915): 1537-1557.
[53]
Carrato A, Gallego-Plazas J, Guillen-Ponce C. Capecitabine plus oxaliplatin for the treatment of colorectal cancer[J]. Expert Rev Anticancer Ther, 2008, 8(2): 161-174.
[54]
Jackman AL, Gibson W, Brown M, et al. The role of the reduced-folate carrier and metabolism to intracellular polyglutamates for the activity of ICI D1694[J]. Adv Exp Med Biol, 1993, 339: 265-276.
[55]
Barni S, Ghidini A, Coinu A, et al. A systematic review of raltitrexed-based first-line chemotherapy in advanced colorectal cancer[J]. Anticancer Drugs, 2014, 25(10): 1122-1128.
[56]
Guo JH, Zhang HY, Gao S, et al. Hepatic artery infusion with raltitrexed or 5-fluorouracil for colorectal cancer liver metastasis[J]. World J Gastroenterol, 2017, 23(8): 1406-1411.
[57]
Gunasekara NS, Faulds D. Raltitrexed. A review of its pharmacological properties and clinical efficacy in the management of advanced colorectal cancer[J]. Drugs, 1998, 55(3): 423-435.
[58]
Fan J, Ye J, Kamphorst JJ, et al. Quantitative flux analysis reveals folate-dependent NADPH production[J]. Nature, 2014, 510(7504): 298-302.
[59]
Levesque N, Christensen KE, Van Der Kraak L, et al. Murine MTHFD1-synthetase deficiency, a model for the human MTHFD1 R653Q polymorphism, decreases growth of colorectal tumors[J]. Mol Carcinog, 2017, 56(3): 1030-1040.
[60]
Moruzzi S, Guarini P, Udali S, et al. One-carbon genetic variants and the role of MTHFD1 1958G>A in liver and colon cancer risk according to global DNA methylation[J]. PloS One, 2017, 12(10): e0185792.
[1] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[2] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[3] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[4] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[5] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[6] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[7] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[8] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[9] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[10] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[11] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[12] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[13] 王磊, 李梦, 孙文利, 刘瑞, 王红春, 卢光泽, 赵颖, 郭进艳, 刘红星. 液相色谱质谱法对急性白血病患者血浆代谢组学的特征分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 850-857.
[14] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[15] 周加军, 余永武, 周涵, 刘勇, 张凌. 甲状旁腺切除对继发性甲状旁腺功能亢进患者骨密度及骨代谢的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 706-710.
阅读次数
全文


摘要