[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA: a cancer journal for clinicians 2020, 70(1): 7-30.
|
[2] |
Siegel RL, Miller KD, Jemal A. Colorectal cancer statistics, 2017[J]. CA: a cancer journal for clinicians 2017, 67: 7-30.
|
[3] |
Siegel RL, Torre LA, Soerjomataram I, et al. Global patterns and trends in colorectal cancer incidence in young adults[J]. Gut, 2019, 68(12): 2179-2185.
|
[4] |
Tibbetts AS, Appling DR. Compartmentalization of Mammalian folate-mediated one-carbon metabolism[J]. Annu Rev Nutr, 2010, 30: 57-81.
|
[5] |
Ducker GS, Rabinowitz JD. One-Carbon Metabolism in Health and Disease[J]. Cell metab, 2017, 25(1): 27-42.
|
[6] |
Mattaini KR, Sullivan MR, Vander Heiden MG. The importance of serine metabolism in cancer[J]. J Cell Biol, 2016, 214(3): 249-257.
|
[7] |
Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid[J]. N Engl J Med, 1948, 238(23): 787-793.
|
[8] |
Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle[J]. Nat Rev Cancer, 2013, 13(8): 572-583.
|
[9] |
Vie N, Copois V, Bascoul-Mollevi C, et al. Overexpression of phosphoserine aminotransferase PSAT1 stimulates cell growth and increases chemoresistance of colon cancer cells[J]. Mol Cancer, 2008, 7: 14.
|
[10] |
Qian C, Xia Y, Ren Y, et al. Identification and validation of PSAT1 as a potential prognostic factor for predicting clinical outcomes in patients with colorectal carcinoma[J]. Oncol lett, 2017, 14(6): 8014-8020.
|
[11] |
Gylfe AE, Katainen R, Kondelin J, et al. Eleven candidate susceptibility genes for common familial colorectal cancer[J]. PLoS Genet, 2013, 9(10): e1003876.
|
[12] |
Sato K, Masuda T, Hu Q, et al. Phosphoserine Phosphatase Is a Novel Prognostic Biomarker on Chromosome 7 in Colorectal Cancer[J]. Anticancer Res, 2017, 37(5): 2365-2371.
|
[13] |
Li X, Xun Z, Yang Y. Inhibition of phosphoserine phosphatase enhances the anticancer efficacy of 5-fluorouracil in colorectal cancer[J]. Biochem Biophys Res Commun, 2016, 477(4): 633-639.
|
[14] |
Reid MA, Allen AE, Liu S, et al. Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism[J]. Nat Commun, 2018, 9(1): 5442.
|
[15] |
Dong JK, Lei HM, Liang Q, et al. Overcoming erlotinib resistance in EGFR mutation-positive lung adenocarcinomas through repression of phosphoglycerate dehydrogenase[J]. Theranostics, 2018, 8(7): 1808-1823.
|
[16] |
Possemato R, Marks KM, Shaul YD, et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer[J]. Nature, 2011, 476(7360): 346-350.
|
[17] |
Sullivan MR, Mattaini KR, Dennstedt EA, et al. Increased Serine Synthesis Provides an Advantage for Tumors Arising in Tissues Where Serine Levels Are Limiting[J]. Cell Metab, 2019, 29(6): 1410-1421.e4.
|
[18] |
Pacold ME, Brimacombe KR, Chan SH, et al. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate[J]. Nat Chem Biol, 2016, 12(6): 452-458.
|
[19] |
Jia X-Q, Zhang S, Zhu H-J, et al. Increased Expression of PHGDH and Prognostic Significance in Colorectal Cancer[J]. Transl Oncol, 2016, 9(3): 191-196.
|
[20] |
Labuschagne CF, van den Broek NJF, Mackay GM, et al. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells[J]. Cell Rep, 2014, 7(4): 1248-1258.
|
[21] |
Maddocks ODK, Berkers CR, Mason SM, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells[J]. Nature, 2013, 493(7433): 542-546.
|
[22] |
Maddocks ODK, Labuschagne CF, Adams PD, et al. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells[J]. Mol Cell, 2016, 61(2): 210-221.
|
[23] |
Macfarlane AJ, Perry CA, McEntee MF, et al. Shmt1 heterozygosity impairs folate-dependent thymidylate synthesis capacity and modifies risk of Apc(min)-mediated intestinal cancer risk[J]. Cancer Res, 2011, 71(6): 2098-2107.
|
[24] |
Komlosi V, Hitre E, Pap E, et al. SHMT1 1420 and MTHFR 677 variants are associated with rectal but not colon cancer[J]. BMC Cancer, 2010, 10: 525.
|
[25] |
Pabalan N, Jarjanazi H, Ozcelik H. A meta-analysis of the C1420T polymorphism in cytosolic serine hydroxymethyltransferase (SHMT1) among Caucasian colorectal cancer populations[J]. Int J Colorectal Dis, 2013, 28(7): 925-932.
|
[26] |
Theodoratou E, Farrington SM, Tenesa A, et al. Dietary vitamin B6 intake and the risk of colorectal cancer[J]. Cancer Epidemiol Biomarkers Prev, 2008, 17(1): 171-182.
|
[27] |
Gylling B, Myte R, Schneede J, et al. Vitamin B-6 and colorectal cancer risk: a prospective population-based study using 3 distinct plasma markers of vitamin B-6 status[J]. Am J Clin Nutr, 2017, 105(4): 897-904.
|
[28] |
Gylling B, Myte R, Ulvik A, et al. One-carbon metabolite ratios as functional B-vitamin markers and in relation to colorectal cancer risk[J]. Int J Cancer, 2019, 144(5): 947-956.
|
[29] |
Bruns H, Kazanavicius D, Schultze D, et al. Glycine inhibits angiogenesis in colorectal cancer: role of endothelial cells[J]. Amino Acids, 2016, 48(11): 2549-2558.
|
[30] |
Terasaki M, Mima M, Kudoh S, et al. Glycine and succinic acid are effective indicators of the suppression of epithelial-mesenchymal transition by fucoxanthinol in colorectal cancer stem-like cells[J]. Oncol Rep, 2018, 40(1): 414-424.
|
[31] |
Ye J, Fan J, Venneti S, et al. Serine catabolism regulates mitochondrial redox control during hypoxia[J]. Cancer Discov, 2014, 4(12): 1406-1417.
|
[32] |
Ducker GS, Chen L, Morscher RJ, et al. Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway[J]. Cell Metab, 2016, 23(6): 1140-1153.
|
[33] |
Wei Z, Song J, Wang G, et al. Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis[J]. Nat Commun, 2018, 9(1): 4468.
|
[34] |
Rai A, Greening DW, Chen M, et al. Exosomes Derived from Human Primary and Metastatic Colorectal Cancer Cells Contribute to Functional Heterogeneity of Activated Fibroblasts by Reprogramming Their Proteome[J]. Proteomics, 2019, 19(8): e1800148.
|
[35] |
Ueland PM. Choline and betaine in health and disease[J]. J Inherit Metab Dis, 2011, 34(1): 3-15.
|
[36] |
Nitter M, Norgard B, de Vogel S, et al. Plasma methionine, choline, betaine, and dimethylglycine in relation to colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) [J]. Ann Oncol, 2014, 25(8): 1609-1615.
|
[37] |
Kikuchi G, Motokawa Y, Yoshida T, et al. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proceedings of the Japan Academy[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2008, 84(7): 246-263.
|
[38] |
Mentch SJ, Mehrmohamadi M, Huang L, et al. Histone Methylation Dynamics and Gene Regulation Occur through the Sensing of One-Carbon Metabolism[J]. Cell Metab, 2015, 22(5): 861-873.
|
[39] |
Okugawa Y, Grady WM, Goel A. Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers[J]. Gastroenterology, 2015, 149(5): 1204-1225.
|
[40] |
Draht MXG, Goudkade D, Koch A, et al. Prognostic DNA methylation markers for sporadic colorectal cancer: a systematic review[J]. Clin Epigenetics, 2018, 10: 35.
|
[41] |
Gai W, Ji L, Lam WKJ, et al. Liver- and Colon-Specific DNA Methylation Markers in Plasma for Investigation of Colorectal Cancers with or without Liver Metastases[J]. Clin Chem, 2018, 64(8): 1239-1249.
|
[42] |
Tse JWT, Jenkins LJ, Chionh F, et al. Aberrant DNA Methylation in Colorectal Cancer: What Should We Target? [J]. Trends cancer, 2017, 3(10): 698-712.
|
[43] |
Li TWH, Yang H, Peng H, et al. Effects of S-adenosylmethionine and methylthioadenosine on inflammation-induced colon cancer in mice[J]. Carcinogenesis, 2012, 33(2): 427-435.
|
[44] |
Li TWH, Peng H, Yang H, et al. S-Adenosylmethionine and methylthioadenosine inhibit β-catenin signaling by multiple mechanisms in liver and colon cancer[J]. Mol Pharmacol, 2015, 87(1): 77-86.
|
[45] |
Liu Z, Cui C, Wang X, et al. Plasma Levels of Homocysteine and the Occurrence and Progression of Rectal Cancer[J]. Med Sci Monit, 2018, 24: 1776-1783.
|
[46] |
Giannoni E, Buricchi F, Raugei G, et al. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth[J]. Mol Cell Biol, 2005, 25(15): 6391-6403.
|
[47] |
Yee C, Yang W, Hekimi S. The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C[J]. Cell, 2014, 157(4): 897-909.
|
[48] |
Lin S, Li Y, Zamyatnin AA Jr, et al. Reactive oxygen species and colorectal cancer[J]. J Cell Physiol, 2018, 233(7): 5119-5132.
|
[49] |
Ser Z, Gao X, Johnson C, et al. Targeting One Carbon Metabolism with an Antimetabolite Disrupts Pyrimidine Homeostasis and Induces Nucleotide Overflow[J]. Cell Rep, 2016, 15(11): 2367-2376.
|
[50] |
DeVita VT Jr, Chu E. A history of cancer chemotherapy[J]. Cancer Res, 2008, 68(21): 8643-8653.
|
[51] |
Gustavsson B, Carlsson G, Machover D, et al. A review of the evolution of systemic chemotherapy in the management of colorectal cancer[J]. Clin Colorectal Cancer, 2015, 14(1): 1-10.
|
[52] |
McQuade RM, Stojanovska V, Bornstein JC, et al. Colorectal Cancer Chemotherapy: The Evolution of Treatment and New Approaches[J]. Curr Med Chem, 2017, 24(915): 1537-1557.
|
[53] |
Carrato A, Gallego-Plazas J, Guillen-Ponce C. Capecitabine plus oxaliplatin for the treatment of colorectal cancer[J]. Expert Rev Anticancer Ther, 2008, 8(2): 161-174.
|
[54] |
Jackman AL, Gibson W, Brown M, et al. The role of the reduced-folate carrier and metabolism to intracellular polyglutamates for the activity of ICI D1694[J]. Adv Exp Med Biol, 1993, 339: 265-276.
|
[55] |
Barni S, Ghidini A, Coinu A, et al. A systematic review of raltitrexed-based first-line chemotherapy in advanced colorectal cancer[J]. Anticancer Drugs, 2014, 25(10): 1122-1128.
|
[56] |
Guo JH, Zhang HY, Gao S, et al. Hepatic artery infusion with raltitrexed or 5-fluorouracil for colorectal cancer liver metastasis[J]. World J Gastroenterol, 2017, 23(8): 1406-1411.
|
[57] |
Gunasekara NS, Faulds D. Raltitrexed. A review of its pharmacological properties and clinical efficacy in the management of advanced colorectal cancer[J]. Drugs, 1998, 55(3): 423-435.
|
[58] |
Fan J, Ye J, Kamphorst JJ, et al. Quantitative flux analysis reveals folate-dependent NADPH production[J]. Nature, 2014, 510(7504): 298-302.
|
[59] |
Levesque N, Christensen KE, Van Der Kraak L, et al. Murine MTHFD1-synthetase deficiency, a model for the human MTHFD1 R653Q polymorphism, decreases growth of colorectal tumors[J]. Mol Carcinog, 2017, 56(3): 1030-1040.
|
[60] |
Moruzzi S, Guarini P, Udali S, et al. One-carbon genetic variants and the role of MTHFD1 1958G>A in liver and colon cancer risk according to global DNA methylation[J]. PloS One, 2017, 12(10): e0185792.
|