切换至 "中华医学电子期刊资源库"

中华普外科手术学杂志(电子版) ›› 2020, Vol. 14 ›› Issue (06) : 612 -615. doi: 10.3877/cma.j.issn.1674-3946.2020.06.022

所属专题: 文献

论著

乳腺癌非前哨淋巴结转移的预测模型构建
杨小军1, 唐海利1, 樊东1, 邱波1, 赵华栋1,(), 包国强1   
  1. 1. 710038 西安,空军军医大学第二附属医院
  • 收稿日期:2020-03-18 出版日期:2020-12-26
  • 通信作者: 赵华栋

Construction of a predictive model for non-Sentinel Lymph Node Metastasis of breast cancer

Xiaojun Yang1, Haili Tang1, Dong Fan1, Bo Qiu1, Huadong Zhao1,(), Guoqiang Bao1   

  1. 1. The Second Affiliated Hospital of the Military Medical University of the Air Force, Shaanxi 710038, China
  • Received:2020-03-18 Published:2020-12-26
  • Corresponding author: Huadong Zhao
  • About author:
    Corresponding author: Zhao Huadong, Email:
  • Supported by:
    Project of Shandong province Chinese medicine science and technology development Program(2017-509)
引用本文:

杨小军, 唐海利, 樊东, 邱波, 赵华栋, 包国强. 乳腺癌非前哨淋巴结转移的预测模型构建[J/OL]. 中华普外科手术学杂志(电子版), 2020, 14(06): 612-615.

Xiaojun Yang, Haili Tang, Dong Fan, Bo Qiu, Huadong Zhao, Guoqiang Bao. Construction of a predictive model for non-Sentinel Lymph Node Metastasis of breast cancer[J/OL]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2020, 14(06): 612-615.

目的

探讨乳腺癌非前哨淋巴结(NSLN)转移的危险因素并构建非前哨淋巴结转移的预测模型。

方法

回顾性分析2016年1月至2019年6月接受前哨淋巴结活检(SLNB)且确诊前哨淋巴结(SLN)阳性,行腋窝淋巴清扫术(ALND)的95例乳腺癌患者的临床资料。应用SPSS 20.0软件对数据进行处理,计数资料用[例(%)]描述,其中连续变量使用秩和检验,分类变量使用χ2检验。对与NSLN转移相关的临床病理因素进行多因素Logistic回归分析,根据Logistic回归分析各变量的回归系数建立非前哨淋巴结转移风险预测模型计算每例患者NSLN转移的预测概率,通过描绘受试者工作特征曲线(ROC)并计算曲线下面积(AUC)从而来评估模型的预测能力。

结果

通过单因素分析显示乳腺癌患者NSLN转移与肿瘤大小、肿瘤位置、淋巴血管是否受侵犯、SLN转移灶大小及SLN阳性率相关(P<0.05);将相关因素纳入多因素Logistic回归分析中,结果显示,肿瘤大小、淋巴血管是否受侵犯、SLN阳性率为乳腺癌患者NSLN转移的独立危险因素。根据Logistic回归分析建立NSLN转移风险预测模型,绘制研究对象的ROC曲线,计算AUC为0.792(95%CI为0.651~0.934);Hosmer-Lemeshow拟合优度检验P=0.603。

结论

肿瘤大小、淋巴血管是否受侵犯、SLN阳性率为乳腺癌患者非前哨淋巴结转移的独立危险因素,NSLN转移风险预测模型对NSLN转移患者具有较高的预测价值,可辅助临床医师术前判断,选择合理的术式。

Objective

To explore the risk factors of non-sentinel lymph node (NSLN) metastasis in breast cancer and to construct a predictive model of non-sentinel lymph node metastasis.

Methods

The clinical data of 95 patients were analyzed retrospectively, who were with breast cancer and underwent sentinel lymph node biopsy (SLNB) and were diagnosed with positive sentinel lymph node (SLN) and underwent axillary lymph node dissection (ALND). Statistical analysis were performed by using SPSS 22.0 software. Count data were expressed as % and the rank sum test was used for continuous variables and the χ2 test was used for categorical variables. Multi-factor logistic regression analysis were performed on the clinicopathological factors related to NSLN metastasis. According to the regression coefficient of each variable of logistic regression analysis, a non sentinel lymph node metastasis risk prediction model was established to calculate the prediction probability of each patient's NSLN metastasis. The prediction ability of the model was evaluated by depicting the receiver operating characteristic curve (ROC) and calculating the area under the curve (AUC).

Results

Univariate analysis showed that NSLN metastasis in breast cancer patients was related to tumor size, tumor location, whether lymph vessels were invaded, size of SLN metastasis and SLN positive rate (P<0.05); Relevant factors were included in the multivariate logistic regression analysis. The results showed that tumor size, whether lymphatic vessels were invaded, and SLN positive rate were independent risk factors for NSLN metastasis in breast cancer patients. According to Logistic regression analysis, establish NSLN transfer risk prediction model. The ROC curve showed the AUC of 0.792 (95%CI was 0.651~0.934); the Hosmer-Leme show goodness-of-fit test P=0.603.

Conclusion

Tumor size, whether lymph vessels are invaded, and SLN positive rate are independent risk factors for non-sentinel lymph node metastasis in breast cancer patients. The NSLN metastasis risk prediction model has a higher predictive value for patients with NSLN metastasis. It could help clinician fpr preoperative evaluation so as to choose the reasonable operation method.

表1 95例单侧原发性乳腺癌患者病理特征与NSLN转移相关性分析[例(%)]
表2 95例单侧原发性乳腺癌患者多因素Logistic回归分析结果
图1 95例单侧原发性乳腺癌患者NSLN转移风险预测模型ROC曲线
表3 95例单侧原发性乳腺癌患者Logistic回归分析各变量赋值方法
[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[2]
Siegel RL, Miller KD, Jemal A.Cancer statistics,2018[J].CA Cancer J Clin,2018, 68(1): 7-30.
[3]
王宁,刘硕,杨雷,等.2018全球癌症统计报告解读[J/CD].肿瘤综合治疗电子杂志,2019, 5(1): 87-97.
[4]
方依寒,赵毅.乳腺癌新辅助化疗后腋窝淋巴结转移综合预测模型的建立[J]. 现代肿瘤医学,2020, 28(1): 53-57.
[5]
温涛,方珍,王科,等.前哨淋巴结阴性乳腺癌病人腋窝低位淋巴结清扫[J].外科理论与实践,2019, 24(5): 434-439.
[6]
王彦伟,胥萍,赵磊,等. 前哨淋巴结活检联合术前超声预测早期乳腺癌腋窝淋巴结转移[J]. 中华普通外科杂志,2019, 34(9): 779-782.
[7]
韦军,王聪,谢贤鑫,等.早期乳腺癌腋窝淋巴结转移风险因素及风险预测模型的建立[J]. 现代生物医学进展,2019, 4: 684-689.
[8]
Al-Masri M, Darwazeh G, El-Ghanem M,et al. Assessment of an existing and modified model for predicting non sentinel lymph node metastasis in breast cancer patients with positive sentinel node biopsy[J]. Gulf J Oncolog, 2013, 1(13): 15-22.
[9]
Patel NU, Lind KE, Mckinney K,et al.Clinical Validation of a Predictive Model for the Presence of Cervical Lymph Node Metastasis in Papillary Thyroid Cancer[J]. AJNR Am J Neuroradiol,2018, 39(4): 756-761.
[10]
范明江,日斯白克·阿不都卡德尔,阿布都沙塔尔·吐尔地.前哨淋巴结活检与腋窝淋巴结清扫对早期乳腺癌患者术后恢复及并发症的影响[J]. 实用癌症杂志,2020, 35(1): 145-148.
[11]
郑克思,郑翔,曾勇,等.102例前哨淋巴结阳性乳腺癌患者腋窝非前哨淋巴结转移相关因素分析[J]. 中国中西医结合外科杂志,2019, 25(3): 310-315.
[12]
杨福兰,习勋,俞建平,等.新辅助化疗后行乳腺癌前哨淋巴结活检意义分析[J]. 中国现代医生,2019, 57(26): 66-68.
[13]
田睿. 保乳手术联合前哨淋巴结活检术治疗早期乳腺癌疗效及患者预后影响因素分析[J]. 医学理论与实践,2020, 33(3): 413-414.
[14]
王启才,李蒙玲,张德杰,等. 早期乳腺癌患者运用前哨淋巴结活检术和腋窝淋巴结清扫术的优劣差异分析[J]. 中国医学创新,2019, 16(5): 17-20.
[15]
周萍,许楠,陆澄.腋窝淋巴结状态对乳腺癌保乳手术后复发病人的预后影响[J].临床外科杂志,2019, 27(9): 769-772.
[16]
Glechner A, W?ckel A, Gartlehner G,et al.Sentinel lymph node dissection only versus complete axillary lymph node dissection in early invasive breast cancer: A systematic review and meta-analysis[J]. Eur J Cancer, 2013, 49(4): 812-825.
[17]
Molland JG, Dias MM, Gillett DJ. Sentinel node biopsy in breast cancer: Results of 103 cases[J]. Aust N Z J Surg, 2000, 70(2): 98-102.
[18]
姚家炳,贾琳娇,司丕蕾,等.乳腺癌淋巴管侵犯与淋巴结转移率的相关性研究[J/CD].中华普通外科学文献(电子版),2018, 12(1): 28-31.
[1] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[2] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[3] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[4] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[5] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[6] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[7] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[8] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[9] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[10] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[11] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[12] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[13] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[14] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[15] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?