切换至 "中华医学电子期刊资源库"

中华普外科手术学杂志(电子版) ›› 2026, Vol. 20 ›› Issue (01) : 46 -50. doi: 10.3877/cma.j.issn.1674-3946.2026.01.014

论著

乳腺癌术后腋窝淋巴结负荷的多因素分析及预测模型的建立及验证
罗仲燃1,(), 曾智豪1, 黄梦娟1, 何晓艺2   
  1. 1528308 广东佛山,南方医科大学第八附属医院(佛山市顺德区第一人民医院)乳腺外科
    2528308 广东佛山,南方医科大学第八附属医院(佛山市顺德区第一人民医院)病案统计室
  • 收稿日期:2025-02-15 出版日期:2026-02-26
  • 通信作者: 罗仲燃

Multivariate analysis of axillary lymph node burden and establishment and validation of a predictive model after breast cancer surgery

Zhongran Luo1,(), Zhihao Zeng1, Mengjuan Huang1, Xiaoyi He2   

  1. 1Department of Breast Surgery, The Eighth Affiliated Hospital of Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan Guangdong Province 528308, China
    2Medical Record and Statistics Office, The Eighth Affiliated Hospital of Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan Guangdong Province 528308, China
  • Received:2025-02-15 Published:2026-02-26
  • Corresponding author: Zhongran Luo
  • Supported by:
    Self-funded Science and Technology Innovation Project (Medical Science and Technology Research) of Foshan, 2022(2220001003955)
引用本文:

罗仲燃, 曾智豪, 黄梦娟, 何晓艺. 乳腺癌术后腋窝淋巴结负荷的多因素分析及预测模型的建立及验证[J/OL]. 中华普外科手术学杂志(电子版), 2026, 20(01): 46-50.

Zhongran Luo, Zhihao Zeng, Mengjuan Huang, Xiaoyi He. Multivariate analysis of axillary lymph node burden and establishment and validation of a predictive model after breast cancer surgery[J/OL]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2026, 20(01): 46-50.

目的

探讨乳腺癌术后腋窝淋巴结负荷的危险因素,构建风险预测模型及验证。

方法

回顾性研究2020年1月至2023年12月363例乳腺癌患者病例资料,全部行腋窝淋巴结清扫术(ALND)或前哨淋巴结活检术(SLNB)。根据术后病理结果,将患者分为高负荷(HNB)组(≥3枚转移淋巴结)和非HNB组(≤2枚转移淋巴结)。采用多因素Logistic回归分析,将独立危险因素引入R软件构建风险列线图,采用Bootstrap法验证模型区分度,绘制Calibration曲线和受试者工作特征(ROC)曲线进行拟合度及预测效能评估。

结果

HNB组患者病灶大小>2cm、腋窝淋巴结超声异常、病理TNM分期Ⅲ-Ⅳ期、乳腺癌分子分型为HER-2过表达型、HER-2表达阳性、神经侵犯、脉管瘤栓、皮肤浸润情况占比高于非HNB组(P<0.05),而乳腺癌Luminal A型、组织分级Ⅰ级占比低于非HNB组(P<0.05)。多因素Logistic回归模型显示,病灶大小>2cm、腋窝淋巴结超声异常、临床分期Ⅲ-Ⅳ期、神经侵犯、脉管侵犯(LVI)是导致患者腋窝淋巴结HNB的独立危险因素(P<0.05)。根据Logistic回归分析筛选5项独立危险因素构建患者腋窝淋巴结HNB风险列线图并进行内部验证显示拟合度好。基于乳腺癌患者腋窝淋巴结HNB危险因素构建的预测模型的曲线下面积(AUC)为0.963(95%CI:0.942-0.984),预测效能较好。

结论

基于乳腺癌患者腋窝淋巴结HNB构建的风险预测模型效能较好,为乳腺癌选择合适的腋窝淋巴结处理策略提供较高的临床价值。

Objective

To explore the risk factors for axillary lymph node burden (ALNB) after breast cancer surgery, and to construct and validate a risk prediction model.

Methods

A retrospective study was conducted on the clinical data of 363 breast cancer patients treated from January 2020 to December 2023. All patients underwent axillary lymph node dissection (ALND) or sentinel lymph node biopsy (SLNB). According to the postoperative pathological results, the patients were divided into the high nodal burden (HNB) group (≥3 metastatic lymph nodes) and the non-HNB group (≤2 metastatic lymph nodes). Multivariate Logistic regression analysis was used to identify independent risk factors, which were then incorporated into R software to construct a risk nomogram. The Bootstrap method was applied to verify the discriminative ability of the model. Calibration curves and receiver operating characteristic (ROC) curves were plotted to evaluate the goodness of fit and predictive performance of the model.

Results

Compared with the non-HNB group, the HNB group had a higher proportion of patients with tumor size>2 cm, abnormal axillary lymph node ultrasound, pathological TNM stage Ⅲ-Ⅳ, HER-2 overexpression subtype of breast cancer, positive HER-2 expression, nerve invasion, lymphovascular invasion (LVI), and skin infiltration (all P<0.05). In contrast, the proportions of Luminal A subtype and histological grade Ⅰ were lower in the HNB group than in the non-HNB group (both P<0.05). Multivariate Logistic regression analysis showed that tumor size>2 cm, abnormal axillary lymph node ultrasound, clinical stage Ⅲ-Ⅳ, nerve invasion, and lymphovascular invasion (LVI) were independent risk factors for axillary lymph node HNB in patients (all P<0.05). A risk nomogram for axillary lymph node HNB was constructed using the 5 independent risk factors identified by Logistic regression analysis. Internal validation demonstrated a good goodness of fit of the nomogram. The area under the curve (AUC) of the predictive model constructed based on the risk factors for axillary lymph node HNB in breast cancer patients was 0.963 (95%CI: 0.942-0.984), indicating good predictive performance.

Conclusion

The risk prediction model constructed based on axillary lymph node HNB in breast cancer patients has good performance, and provides high clinical value for selecting appropriate axillary lymph node management strategies in breast cancer treatment.

图1 样本估算公式对照组暴露率:0.2,预期OR值:3.5,检验水准:α=0.05,把握度:0.9,计算可得病例组n=64例。考虑15%失访以及拒访的情况,最终可设定病例组76例,对照组76例。
表1 两组乳腺癌患者的临床资料分析[例(%)]
项目 HNB组(n=87) 非HNB组(n=276) χ2 P
年龄     0.648 0.421
≤50岁 37(42.5) 131(47.5)    
>50岁 50(57.5) 145(52.5)    
病灶大小     18.170 <0.001
≤2cm 20(23.0) 135(48.9)    
>2cm 67(77.0) 141(51.1)    
腋窝淋巴结超声        
正常 21(24.1) 185(67.0) 49.579 <0.001
异常 66(75.9) 91(33.0)    
病理TNM分期     249.750 <0.001
Ⅰ-Ⅱ期 16(18.4) 270(97.8)    
Ⅲ-Ⅳ期 71(81.6) 6(2.2)    
乳腺癌分子分型     10.635 0.031
Luminal A型 21(24.1) 112(40.6)    
Luminal B型(HER-2阴性) 23(26.4) 57(20.7)    
HER-2过表达型 36(41.4) 76(27.5)    
三阴性型 7(8.1) 31(11.2)    
组织分级     7.602 0.022
Ⅰ级 2(2.3) 31(11.2)    
Ⅱ级 39(44.8) 129(46.7)    
Ⅲ级 46(52.9) 116(42.0)    
ER表达     0.294 0.588
阴性 21(24.1) 59(21.4)    
阳性 66(75.9) 217(78.6)    
PR表达     1.225 0.268
阴性 31(35.6) 81(29.3)    
阳性 56(64.4) 195(70.4)    
HER-2表达     5.942 0.015
阴性 51(58.6) 200(72.5)    
阳性 36(41.4) 76(27.5)    
Ki67表达     2.436 0.119
非高表达 29(33.3) 118(42.8)    
高表达 58(66.7) 158(57.2)    
神经侵犯     13.773 <0.001
18(20.7) 19(6.9)    
69(79.3) 257(93.1)    
LVI     68.594 <0.001
71(81.6) 86(31.2)    
16(18.4) 190(68.8)    
皮肤浸润情况     4.678 0.031
5(5.7) 3(1.1)    
82(94.3) 273(98.9)    
表2 乳腺癌患者腋窝淋巴结HNB影响因素的多因素Logistic回归分析
图2 乳腺癌患者腋窝淋巴结HNB风险因素列线图
图3 乳腺癌患者腋窝淋巴结HNB的风险预测模型校准曲线
图4 乳腺癌患者腋窝淋巴结HNB风险预测模型的ROC曲线
表3 影响乳腺癌患者腋窝淋巴结HNB的各项因素评分表(分)
[1]
何思怡, 李贺, 曹毛毛, 等. 全球及我国女性乳腺癌疾病负担年龄分布及变化趋势[J]. 中国肿瘤, 2023, 32(01): 1-7.
[2]
Giammarile F, Vidal-Sicart S, Paez D, et al. Sentinel Lymph Node Methods in Breast Cancer [J]. Semin Nucl Med, 2022, 52(5): 551-560.
[3]
Tseng J, Alban RF, Siegel E, et al. Changes in utilization of axillary dissection in women with invasive breast cancer and sentinel node metastasis after the ACOSOG Z0011 trial [J]. Breast J, 2021, 27(3): 216-221.
[4]
Tinterri C, Canavese G, Gatzemeier W, et al. Sentinel lymph node biopsy versus axillary lymph node dissection in breast cancer patients undergoing mastectomy with one to two metastatic sentinel lymph nodes: sub-analysis of the SINODAR-ONE multicentre randomized clinical trial and reopening of enrolment [J]. Br J Surg, 2023, 110(9): 1143-1152.
[5]
中华医学会外科学分会乳腺外科学组. 中国早期乳腺癌前哨淋巴结活检手术临床实践指南(2022版)[J]. 中国实用外科杂志, 2022, 42(02): 137-145.
[6]
唐琴, 朱际飚, 孙劲松, 等. 前哨淋巴结活检在乳腺癌手术中的临床意义研究[J/CD]. 中华普外科手术学杂志(电子版), 2021, 15(03): 302-305.
[7]
杜彦秋, 管霞, 常登峰等. 基于Bevilacqua模型的乳腺癌保乳术患者术后淋巴水肿风险预测的临床研究[J/CD]. 中华普外科手术学杂志(电子版), 2021, 15(01): 53-56.
[8]
Nie Y, Ying B, Lu Z, et al. Predicting survival and prognosis of postoperative breast cancer brain metastasis: a population-based retrospective analysis[J]. Chin Med J (Engl), 2023, 136(14): 1699-1707.
[9]
Shao H, Sun Y, Na Z, et al. Diagnostic value of applying preoperative breast ultrasound and clinicopathologic features to predict axillary lymph node burden in early invasive breast cancer: a study of 1247 patients[J]. BMC Cancer, 2024, 24(1): 112.
[10]
王阳, 贾国丛, 杨红星. 乳腺癌组织中VSIG4、雄激素受体的表达及其与临床病理特征和腋窝淋巴结转移的关系[J]. 实用癌症杂志, 2022, 37(10): 1596-1599.
[11]
Meng L, Zheng T, Wang Y, et al. Development of a prediction model based on LASSO regression to evaluate the risk of non-sentinel lymph node metastasis in Chinese breast cancer patients with 1-2 positive sentinel lymph nodes[J]. Sci Rep, 2021, 11(1): 19972.
[12]
郭星妍, 闫国珍, 李爱华, 等. 多模态超声对乳腺癌腋窝淋巴结转移的诊断价值研究[J]. 中国超声医学杂志, 2025, 41(06): 626-630.
[13]
马珊珊, 范静婧, 王一凡, 等. 三阴性乳腺癌预后因素分析及预测模型构建[J]. 中华肿瘤防治杂志, 2022, 29(15): 1099-1105.
[14]
付媛媛, 姜晶鑫, 陈述政, 等. T1期乳腺癌患者发生同侧腋窝淋巴结转移风险列线图的建立[J]. 浙江大学学报(医学版), 2021, 50(01): 81-89.
[15]
金丽军, 金丽霞, 巴图, 等. 乳腺癌腋窝淋巴结转移的影响因素及腋窝逆向淋巴示踪术的应用效果和安全性分析[J]. 中国医刊, 2023, 58(10): 1090-1094.
[1] 潘辰蕊, 杨冰洁, 沈会明, 王颖彦, 韩佳豪, 李嘉. 多模态超声联合免疫炎症指标预测乳腺癌腋窝淋巴结转移的价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(10): 969-975.
[2] 深圳市医学会乳腺病学分会, 深圳市医学会肿瘤学分会, 深圳市医师协会乳腺专科医师分会, 深圳市健康管理协会乳房健康与康复管理专业委员会, 深圳市抗癌协会乳腺癌专业委员会, 深圳市抗癌协会肿瘤放射治疗专业委员会, 深圳市中西医结合学会甲状腺乳腺病专业委员会. 乳腺癌新辅助治疗的疗效预测和疗效评价专家共识(2025版)[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 321-330.
[3] 李雨秋, 莫红楠. 乳腺癌肿瘤微环境特征及免疫治疗新进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 331-338.
[4] 金烨莹, 王艺璇, 杨瑞. 基于单细胞RNA测序的乳腺癌肿瘤相关巨噬细胞亚群鉴定与临床预后分析[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 339-347.
[5] 王天艺, 李筝, 许锐. 激素受体阳性/HER-2阴性早期乳腺癌的新辅助治疗[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 352-357.
[6] 刘锦婷, 梁高强, 李文涛. 乳房切除术后感觉功能重建的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 358-361.
[7] 邓宝, 郭子琳, 仲雷. 乳腺癌治疗中的铁死亡机制与铁基纳米材料应用进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 362-368.
[8] 樊晓宇, 刘风侠, 马力. 年轻乳腺癌患者养育忧虑的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 369-372.
[9] 王达, 朱建敏. 血小板/淋巴细胞计数比值对乳腺癌新辅助化疗疗效的预测效能[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 650-653.
[10] 马超, 王传嘉, 张武坊. 经腋窝入路单孔腔镜保乳术与传统开放手术治疗早期乳腺癌的对比研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 674-677.
[11] 黄少坚, 梁汉标, 李清平, 唐善华, 李青妍, 李芷西, 黄灿, 王小振, 陈灿辉, 王恺, 李川江. 基于影像组学和临床特征构建肝癌新辅助/转化治疗后病理学完全缓解预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 860-867.
[12] 刘燕, 马亦旻. 消化道早癌患者内镜黏膜下剥离术后局部复发预测模型构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 576-582.
[13] 王超, 张晓会, 李晓帆, 赵海丹. 维持性血液透析患者感染与心脑血管死亡风险的比较及联合预测模型构建[J/OL]. 中华临床医师杂志(电子版), 2025, 19(09): 675-681.
[14] 郭岩, 赵灵芝, 石光英. 代谢相关脂肪性肝病患者发生冠心病的风险预测模型[J/OL]. 中华临床医师杂志(电子版), 2025, 19(09): 682-688.
[15] 皇立媛, 浦洁, 王苏贵, 陈婷婷, 朱德慧, 胡雪. 中青年脑卒中患者应激障碍风险预测模型的构建与验证[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 504-512.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?