切换至 "中华医学电子期刊资源库"

中华普外科手术学杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 105 -109. doi: 10.3877/cma.j.issn.1674-3946.2023.01.027

综述

癌症患者恶病质脂肪酸代谢研究进展
刘宇1, 王萌1,()   
  1. 1. 210008 南京,南京中医药大学鼓楼临床医学院普通外科
  • 收稿日期:2022-04-13 出版日期:2023-02-26
  • 通信作者: 王萌

Advances in fatty acid metabolism in cancer patients with cachexia

Yu Liu1, Meng Wang1,()   

  1. 1. Department of General Surgery,Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine,Nanjing Jiangsu Province 210008,China
  • Received:2022-04-13 Published:2023-02-26
  • Corresponding author: Meng Wang
引用本文:

刘宇, 王萌. 癌症患者恶病质脂肪酸代谢研究进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(01): 105-109.

Yu Liu, Meng Wang. Advances in fatty acid metabolism in cancer patients with cachexia[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2023, 17(01): 105-109.

癌症预计成为人类健康的头号杀手。近年来关于癌症营养代谢的研究迅速增多,包括葡萄糖、氨基酸和脂肪酸等营养物质对肿瘤细胞增殖和扩散的影响。恶病质是影响癌症患者预后的关键因素,约80%的癌症患者罹患恶病质导致癌症治疗失败。针对恶病质的药物治疗和饮食治疗目前还缺乏临床研究。本综述主要通过脂肪酸对肿瘤细胞增殖和转移的影响以及恶病质脂肪酸相关药物及饮食治疗对胃癌恶病质脂肪酸代谢研究进展进行综述。

Cancer is expected to become the number one killer of human health. In recent years,there has been a surge in research on the nutritional metabolism of cancer,including the effects of nutrients such as glucose,amino acids,and fatty acids on the proliferation and spread of cancer. Cachexia is a key factor affecting the prognosis of cancer. About 80% of cancer patients suffer from cachexia,which leads to the failure of cancer treatment. At present,there are still many clinical studies on drug therapy and dietary therapy for cachexia. This review mainly reviews the research progress of cachexia fatty acid metabolism in gastric cancer through the effects of fatty acids on cancer cell proliferation and metastasis,cachexia fatty acid-related drugs,and dietary therapy.

图1 脂肪酸代谢在癌症恶病质中的相关机制
[21]
Ladanyi AMukherjee AKenny HA,et al. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis[J]. Oncogene201837(17):2285-2301.
[22]
Watt MJClark AKSelth LA,et al. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer[J]. Sci Transl Med201911(478):eaau5758.
[23]
Bergers GFendt SM. The metabolism of cancer cells during metastasis[J]. Nat Rev Cancer202121(3):162-180.
[24]
Pan JDai QZhang T,et al. Palmitate acid promotes gastric cancer metastasis via FABP5/SP1/UCA1 pathway[J]. Cancer Cell Int201919:69.
[25]
Peck BSchug ZTZhang Q,et al. Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments[J]. Cancer Metab20164:6.
[26]
Peck BSchulze A. Lipid desaturation - the next step in targeting lipogenesis in cancer?[J]. FEBS J2016283(15):2767-2778.
[27]
Kikuchi KTsukamoto H. Stearoyl-CoA desaturase and tumorigenesis[J]. Chem Biol Interact2020316:108917.
[28]
Presler MWojtczyk-Miaskowska ASchlichtholz B,et al. Increased expression of the gene encoding stearoyl-CoA desaturase 1 in human bladder cancer[J]. Mol Cell Biochem2018447(1-2):217-224.
[29]
Luis GGodfroid ANishiumi S,et al. Tumor resistance to ferroptosis driven by Stearoyl-CoA Desaturase-1(SCD1)in cancer cells and Fatty Acid Biding Protein-4(FABP4)in tumor microenvironment promote tumor recurrence[J]. Redox Biol202143:102006.
[30]
Wang CShi MJi J,et al. Stearoyl-CoA desaturase 1(SCD1)facilitates the growth and anti-ferroptosis of gastric cancer cells and predicts poor prognosis of gastric cancer[J]. Aging(Albany NY)202012(15):15374-15391.
[31]
Petruzzelli MSchweiger MSchreiber R,et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia[J]. Cell Metabolism201420(3):433-447.
[32]
Cohen PLevy JDZhang Y,et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch[J]. Cell2014156(1-2):304-316.
[33]
Peng WQXiao GLi BY,et al. l-Theanine Activates the Browning of White Adipose Tissue Through the AMPK/α-Ketoglutarate/Prdm16 Axis and Ameliorates Diet-Induced Obesity in Mice[J]. Diabetes202170(7):1458-1472.
[34]
Simopoulos AP. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity[J]. Nutrients20168(3):128.
[35]
Briscoe CPTadayyon MAndrews JL,et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids[J]. J Biol Chem2003278(13):11303-11311.
[36]
Hirasawa ATsumaya KAwaji T,et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120[J]. Nat Med200511(1):90-94.
[37]
Freitas RDSCampos MM. Protective Effects of Omega-3 Fatty Acids in Cancer-Related Complications[J]. Nutrients201911(5):945.
[38]
Freitas RDSMuradás TCDagnino APA,et al. Targeting FFA1 and FFA4 receptors in cancer-induced cachexia[J]. Am J Physiol Endocrinol Metab2020319(5):E877-E892.
[39]
Hanai NTerada HHirakawa H,et al. Prospective randomized investigation implementing immunonutritional therapy using a nutritional supplement with a high blend ratio of ω-3 fatty acids during the perioperative period for head and neck carcinomas[J]. Jpn J Clin Oncol201848(4):356-361.
[40]
Manson JECook NRLee IM,et al. Marine n-3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer[J]. N Engl J Med2019380(1):23-32.
[41]
Bai DWu YDeol P,et al. Palmitic acid negatively regulates tumor suppressor PTEN through T366 phosphorylation and protein degradation[J]. Cancer Lett2021496:127-133.
[42]
Pascual GDomínguez DElosúa-Bayes M,et al. Dietary palmitic acid promotes a prometastatic memory via Schwann cells[J]. Nature2021599(7885):485-490.
[43]
Johns NStephens NAFearon KC. Muscle wasting in cancer[J]. Int J Biochem Cell Biol201345(10):2215-2229.
[44]
Kanarek NPetrova BSabatini DM. Dietary modifications for enhanced cancer therapy[J]. Nature2020579(7800):507-517.
[45]
Brandhorst SChoi IYWei M,et al. A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration,Enhanced Cognitive Performance,and Healthspan[J]. Cell Metabolism201522(1):86-99.
[46]
Gallagher EJLeRoith D. Minireview:IGF,Insulin,and Cancer[J]. Endocrinology2011152(7):2546-2551.
[47]
Weber DDAminazdeh-Gohari SKofler B. Ketogenic diet in cancer therapy[J]. Aging(Albany NY)201810(2):164-165.
[48]
Allen BGBhatia SKAnderson CM,et al. Ketogenic diets as an adjuvant cancer therapy:History and potential mechanism[J]. Redox Biol20142:963-970.
[49]
Torrence MEManning BD. Nutrient sensing in cancer[J]. Ann Rev Cancer Biol20182:251-269.
[50]
Fruman DAChiu HHopkins BD,et al. The PI3K Pathway in Human Disease[J]. Cell2017170(4):605-635.
[51]
Hopkins BDPauli CDu X,et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors[J]. Nature2018560(7719):499-503.
[52]
Hao JWWang JGuo H,et al. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis[J]. Nat Communication202011(1):4765.
[53]
Cao WYang WFan R,et al. miR-34a regulates cisplatin-induce gastric cancer cell death by modulating PI3K/AKT/survivin pathway[J]. Tumour Biol201435(2):1287-1295.
[54]
俞发荣,李建军,Yu Xin,等. 不饱和脂肪酸对人胃癌细胞PI3K-Akt信号通路中相关基因表达的影响[J].生态科学201938(06):60-63.
[1]
Bray FFerlay JSoerjomataram I,et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin201868(6):394-424.
[2]
Argilés JMStemmler BLópez-Soriano FJ,et al. Inter-tissue communication in cancer cachexia[J]. Nat Rev Endocrinol201815(1):9-20.
[3]
Fearon KStrasser FAnker SD,et al. Definition and classification of cancer cachexia:an international consensus[J]. Lancet Oncol201112(5):489-495.
[4]
Porporato PE. Understanding cachexia as a cancer metabolism syndrome[J]. Oncogenesis20165(2):e200.
[5]
Maan MPeters JMDutta M,et al. Lipid metabolism and lipophagy in cancer[J]. Biochem Biophys Res Commun2018504(3):582-589.
[6]
Koundouros NPoulogiannis G. Reprogramming of fatty acid metabolism in cancer[J]. Br J Cancer2020122(1):4-22.
[7]
Ma YTemkin SMHawkridge AM,et al. Fatty acid oxidation:An emerging facet of metabolic transformation in cancer[J]. Cancer Lett2018435:92-100.
[8]
Wang QLi DCao G,et al. IL-27 signaling promotes adipocyte thermogenesis and energy expenditure[J]. Nature2021600(7888):314-318.
[9]
Kir SSpiegelman BM. CACHEXIA & BROWN FAT:A BURNING ISSUE IN CANCER[J]. Trends Cancer20162(9):461-463.
[10]
Kir SWhite JPKleiner S,et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia[J]. Nature2014513(7516):100-104.
[11]
Argilés JM. The 2015 ESPEN Sir David Cuthbertson lecture:Inflammation as the driving force of muscle wasting in cancer[J]. Clin Nutr201736(3):798-803.
[12]
Archid RSolass WTempfer C,et al. Cachexia Anorexia Syndrome and Associated Metabolic Dysfunction in Peritoneal Metastasis[J]. Int J Mol Sci201920(21):5444.
[13]
Fukawa TYan-Jiang BCMin-Wen JC,et al. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia[J]. Nat Med201622(6):666-671.
[14]
Lu SWang Y. Nonmetabolic functions of metabolic enzymes in cancer development[J]. Cancer Communication(London)201838(1):63.
[15]
Fearon KCGlass DJGuttridge DC. Cancer cachexia:mediators,signaling,and metabolic pathways[J]. Cell Metabolism201216(2):153-166.
[16]
Riuzzi FSorci GSagheddu R,et al. RAGE in the pathophysiology of skeletal muscle[J]. J Cachexia Sarcopenia Muscle20189(7):1213-1234.
[17]
Li ZZhang H. Reprogramming of glucose,fatty acid and amino acid metabolism for cancer progression[J]. Cell Mol Life Sci201673(2):377-392.
[18]
Hao JWWang JGuo H,et al. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis[J]. Nat Commun202011(1):4765.
[19]
Pascual GAvgustinova AMejetta S,et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36[J]. Nature2017541(7635):41-45.
[20]
Calvo DGómez-Coronado DSuárez Y,et al. Human CD36 is a high affinity receptor for the native lipoproteins HDL,LDL,and VLDL[J]. J Lipid Res199839(4):777-788.
[1] 匡德凤, 李志国, 华绍芳, 薛凤霞. 高脂诱导孕鼠血清及胎盘组织脂肪酸结合蛋白-4及相关脂蛋白水平变化及其意义[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 338-344.
[2] 唐梅, 杨凡. 母乳喂养与儿童单纯性肥胖的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(03): 269-274.
[3] 杨广宇, 王璐, 王宇, 张驰, 曾俊, 江华, 孙明伟. 静脉补充Omega-3多不饱和脂肪酸对脓毒症患者临床结局影响的系统评价与荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 148-156.
[4] 张秀杨, 张龙飞, 陈世远, 高涌. 缺氧诱导因子1α介导单羧酸转运蛋白1表达参与短链脂肪酸对肠道缺氧保护作用的研究[J]. 中华普通外科学文献(电子版), 2023, 17(01): 18-23.
[5] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[6] 彭聪, 罗晓英, 白阳秋, 江小柯, 张炳勇. 肠道菌群代谢产物与间充质干细胞相互作用的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 367-371.
[7] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[8] 朱丽君, 乔晞. 肠道菌群对急性肾损伤的影响[J]. 中华肾病研究电子杂志, 2022, 11(03): 148-151.
[9] 杜晓艳, 黄蓉双, 马良, 付平. 脂肪酸结合蛋白4在肾脏疾病中的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(01): 44-46.
[10] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[11] 沈丘月, 侯新琳. n-3多不饱和脂肪酸脑保护机制研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 471-478.
[12] 徐微, 杨扬, 袁勇贵. 中枢介导的腹痛综合征与抑郁症共病机制研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(02): 175-178.
[13] 林海燕, 程宁, 黄鑫, 刘威, 王园园. 自拟疏肝健脾方对肝郁脾虚型非酒精性单纯性脂肪肝患者短链脂肪酸的影响[J]. 中华临床医师杂志(电子版), 2021, 15(11): 871-876.
[14] 郑毅华, 陈晓丹, 伍慧妍, 詹铀超. 缺血性修饰白蛋白、心型脂肪酸结合蛋白、可溶性生长刺激表达基因2蛋白与GRACE评分联合检测对急性冠状动脉综合征的早期诊断价值[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 10-15.
[15] 谭肖卓, 曹冲, 邵怡凯, 姚琪远. 短链脂肪酸对机体代谢的调控作用[J]. 中华肥胖与代谢病电子杂志, 2022, 08(01): 46-51.
阅读次数
全文


摘要