[21] |
Ladanyi A,Mukherjee A,Kenny HA,et al. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis[J]. Oncogene,2018,37(17):2285-2301.
|
[22] |
Watt MJ,Clark AK,Selth LA,et al. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer[J]. Sci Transl Med,2019,11(478):eaau5758.
|
[23] |
Bergers G,Fendt SM. The metabolism of cancer cells during metastasis[J]. Nat Rev Cancer,2021,21(3):162-180.
|
[24] |
Pan J,Dai Q,Zhang T,et al. Palmitate acid promotes gastric cancer metastasis via FABP5/SP1/UCA1 pathway[J]. Cancer Cell Int,2019,19:69.
|
[25] |
Peck B,Schug ZT,Zhang Q,et al. Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments[J]. Cancer Metab,2016,4:6.
|
[26] |
Peck B,Schulze A. Lipid desaturation - the next step in targeting lipogenesis in cancer?[J]. FEBS J,2016,283(15):2767-2778.
|
[27] |
Kikuchi K,Tsukamoto H. Stearoyl-CoA desaturase and tumorigenesis[J]. Chem Biol Interact,2020,316:108917.
|
[28] |
Presler M,Wojtczyk-Miaskowska A,Schlichtholz B,et al. Increased expression of the gene encoding stearoyl-CoA desaturase 1 in human bladder cancer[J]. Mol Cell Biochem,2018,447(1-2):217-224.
|
[29] |
Luis G,Godfroid A,Nishiumi S,et al. Tumor resistance to ferroptosis driven by Stearoyl-CoA Desaturase-1(SCD1)in cancer cells and Fatty Acid Biding Protein-4(FABP4)in tumor microenvironment promote tumor recurrence[J]. Redox Biol,2021,43:102006.
|
[30] |
Wang C,Shi M,Ji J,et al. Stearoyl-CoA desaturase 1(SCD1)facilitates the growth and anti-ferroptosis of gastric cancer cells and predicts poor prognosis of gastric cancer[J]. Aging(Albany NY),2020,12(15):15374-15391.
|
[31] |
Petruzzelli M,Schweiger M,Schreiber R,et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia[J]. Cell Metabolism,2014,20(3):433-447.
|
[32] |
Cohen P,Levy JD,Zhang Y,et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch[J]. Cell,2014,156(1-2):304-316.
|
[33] |
Peng WQ,Xiao G,Li BY,et al. l-Theanine Activates the Browning of White Adipose Tissue Through the AMPK/α-Ketoglutarate/Prdm16 Axis and Ameliorates Diet-Induced Obesity in Mice[J]. Diabetes,2021,70(7):1458-1472.
|
[34] |
Simopoulos AP. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity[J]. Nutrients,2016,8(3):128.
|
[35] |
Briscoe CP,Tadayyon M,Andrews JL,et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids[J]. J Biol Chem,2003,278(13):11303-11311.
|
[36] |
Hirasawa A,Tsumaya K,Awaji T,et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120[J]. Nat Med,2005,11(1):90-94.
|
[37] |
Freitas RDS,Campos MM. Protective Effects of Omega-3 Fatty Acids in Cancer-Related Complications[J]. Nutrients,2019,11(5):945.
|
[38] |
Freitas RDS,Muradás TC,Dagnino APA,et al. Targeting FFA1 and FFA4 receptors in cancer-induced cachexia[J]. Am J Physiol Endocrinol Metab,2020,319(5):E877-E892.
|
[39] |
Hanai N,Terada H,Hirakawa H,et al. Prospective randomized investigation implementing immunonutritional therapy using a nutritional supplement with a high blend ratio of ω-3 fatty acids during the perioperative period for head and neck carcinomas[J]. Jpn J Clin Oncol,2018,48(4):356-361.
|
[40] |
Manson JE,Cook NR,Lee IM,et al. Marine n-3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer[J]. N Engl J Med,2019,380(1):23-32.
|
[41] |
Bai D,Wu Y,Deol P,et al. Palmitic acid negatively regulates tumor suppressor PTEN through T366 phosphorylation and protein degradation[J]. Cancer Lett,2021,496:127-133.
|
[42] |
Pascual G,Domínguez D,Elosúa-Bayes M,et al. Dietary palmitic acid promotes a prometastatic memory via Schwann cells[J]. Nature,2021,599(7885):485-490.
|
[43] |
Johns N,Stephens NA,Fearon KC. Muscle wasting in cancer[J]. Int J Biochem Cell Biol,2013,45(10):2215-2229.
|
[44] |
Kanarek N,Petrova B,Sabatini DM. Dietary modifications for enhanced cancer therapy[J]. Nature,2020,579(7800):507-517.
|
[45] |
Brandhorst S,Choi IY,Wei M,et al. A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration,Enhanced Cognitive Performance,and Healthspan[J]. Cell Metabolism,2015,22(1):86-99.
|
[46] |
Gallagher EJ,LeRoith D. Minireview:IGF,Insulin,and Cancer[J]. Endocrinology,2011,152(7):2546-2551.
|
[47] |
Weber DD,Aminazdeh-Gohari S,Kofler B. Ketogenic diet in cancer therapy[J]. Aging(Albany NY),2018,10(2):164-165.
|
[48] |
Allen BG,Bhatia SK,Anderson CM,et al. Ketogenic diets as an adjuvant cancer therapy:History and potential mechanism[J]. Redox Biol,2014,2:963-970.
|
[49] |
Torrence ME,Manning BD. Nutrient sensing in cancer[J]. Ann Rev Cancer Biol,2018,2:251-269.
|
[50] |
Fruman DA,Chiu H,Hopkins BD,et al. The PI3K Pathway in Human Disease[J]. Cell,2017,170(4):605-635.
|
[51] |
Hopkins BD,Pauli C,Du X,et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors[J]. Nature,2018,560(7719):499-503.
|
[52] |
Hao JW,Wang J,Guo H,et al. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis[J]. Nat Communication,2020,11(1):4765.
|
[53] |
Cao W,Yang W,Fan R,et al. miR-34a regulates cisplatin-induce gastric cancer cell death by modulating PI3K/AKT/survivin pathway[J]. Tumour Biol,2014,35(2):1287-1295.
|
[54] |
俞发荣,李建军,Yu Xin,等. 不饱和脂肪酸对人胃癌细胞PI3K-Akt信号通路中相关基因表达的影响[J].生态科学,2019,38(06):60-63.
|
[1] |
Bray F,Ferlay J,Soerjomataram I,et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2018,68(6):394-424.
|
[2] |
Argilés JM,Stemmler B,López-Soriano FJ,et al. Inter-tissue communication in cancer cachexia[J]. Nat Rev Endocrinol,2018,15(1):9-20.
|
[3] |
Fearon K,Strasser F,Anker SD,et al. Definition and classification of cancer cachexia:an international consensus[J]. Lancet Oncol,2011,12(5):489-495.
|
[4] |
Porporato PE. Understanding cachexia as a cancer metabolism syndrome[J]. Oncogenesis,2016,5(2):e200.
|
[5] |
Maan M,Peters JM,Dutta M,et al. Lipid metabolism and lipophagy in cancer[J]. Biochem Biophys Res Commun,2018,504(3):582-589.
|
[6] |
Koundouros N,Poulogiannis G. Reprogramming of fatty acid metabolism in cancer[J]. Br J Cancer,2020,122(1):4-22.
|
[7] |
Ma Y,Temkin SM,Hawkridge AM,et al. Fatty acid oxidation:An emerging facet of metabolic transformation in cancer[J]. Cancer Lett,2018,435:92-100.
|
[8] |
Wang Q,Li D,Cao G,et al. IL-27 signaling promotes adipocyte thermogenesis and energy expenditure[J]. Nature,2021,600(7888):314-318.
|
[9] |
Kir S,Spiegelman BM. CACHEXIA & BROWN FAT:A BURNING ISSUE IN CANCER[J]. Trends Cancer,2016,2(9):461-463.
|
[10] |
Kir S,White JP,Kleiner S,et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia[J]. Nature,2014,513(7516):100-104.
|
[11] |
Argilés JM. The 2015 ESPEN Sir David Cuthbertson lecture:Inflammation as the driving force of muscle wasting in cancer[J]. Clin Nutr,2017,36(3):798-803.
|
[12] |
Archid R,Solass W,Tempfer C,et al. Cachexia Anorexia Syndrome and Associated Metabolic Dysfunction in Peritoneal Metastasis[J]. Int J Mol Sci,2019,20(21):5444.
|
[13] |
Fukawa T,Yan-Jiang BC,Min-Wen JC,et al. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia[J]. Nat Med,2016,22(6):666-671.
|
[14] |
Lu S,Wang Y. Nonmetabolic functions of metabolic enzymes in cancer development[J]. Cancer Communication(London),2018,38(1):63.
|
[15] |
Fearon KC,Glass DJ,Guttridge DC. Cancer cachexia:mediators,signaling,and metabolic pathways[J]. Cell Metabolism,2012,16(2):153-166.
|
[16] |
Riuzzi F,Sorci G,Sagheddu R,et al. RAGE in the pathophysiology of skeletal muscle[J]. J Cachexia Sarcopenia Muscle,2018,9(7):1213-1234.
|
[17] |
Li Z,Zhang H. Reprogramming of glucose,fatty acid and amino acid metabolism for cancer progression[J]. Cell Mol Life Sci,2016,73(2):377-392.
|
[18] |
Hao JW,Wang J,Guo H,et al. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis[J]. Nat Commun,2020,11(1):4765.
|
[19] |
Pascual G,Avgustinova A,Mejetta S,et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36[J]. Nature,2017,541(7635):41-45.
|
[20] |
Calvo D,Gómez-Coronado D,Suárez Y,et al. Human CD36 is a high affinity receptor for the native lipoproteins HDL,LDL,and VLDL[J]. J Lipid Res,1998,39(4):777-788.
|