[1] |
中国临床肿瘤学会胃肠间质瘤专家委员会,中国抗癌协会胃肠间质瘤专业委员会,中国医师协会外科医师分会胃肠道间质瘤诊疗专业委员会. 胃肠间质瘤基因检测与临床应用的中国专家共识(2021版)[J]. 临床肿瘤学杂志,2021,26(10):920-927.
|
[2] |
Zhu CZ,Liu D,Kang WM,et al. Ghrelin and gastrointestinal stromal tumors[J]. World J Gastroenterol,2017,23(10):1758-1763.
|
[3] |
Serrano C,Marino-Enriquez A,Tao DL,et al. Complementary activity of tyrosine kinase inhibitors against secondary kit mutations in imatinib-resistant gastrointestinal stromal tumours[J]. Br J Cancer,2019,120(6):612-620.
|
[4] |
王峰,宋鹏,汪灏,等. 284例胃间质瘤临床特征及预后分析[J/CD]. 中华普外科手术学杂志(电子版),2017,11(02):123-126.
|
[5] |
Boichuk S,Galembikova A,Mikheeva E,et al. Inhibition of FGF2-Mediated Signaling in GIST-Promising Approach for Overcoming Resistance to Imatinib[J]. Cancers(Basel),2020,12(6):1674.
|
[6] |
Heinrich MC,Jones RL,Mehren MV,et al. Clinical activity of BLU-285 in advanced gastrointestinal stromal tumor(GIST)[J]. J Clin Oncol,35,2017:11011-11011.
|
[7] |
张玉,缪丽燕. 胃肠间质瘤靶向药物的治疗药物监测中国专家共识[J]. 中国医院药学杂志,2021,41(20):2041-2049.
|
[8] |
Lin JX,Chen QF,Zheng CH,et al. Is 3-years duration of adjuvant imatinib mesylate treatment sufficient for patients with high-risk gastrointestinal stromal tumor?A study based on long-term follow-up[J]. J Cancer Res Clin Oncol,2017,143(4):727-734.
|
[9] |
于恒,杜尚策,徐恩,等. 影响胃肠道间质瘤预后因素的研究进展[J/CD]. 中华普外科手术学杂志(电子版),2020,14(01):97-100.
|
[10] |
王峰,于恒,王萌,等. 中高危险度胃肠间质瘤患者术后治疗的预后分析[J/CD]. 中华普外科手术学杂志(电子版),2021,15(04):460-463.
|
[11] |
张宁,刘蓉,丁乾坤. 舒尼替尼治疗伊马替尼耐药胃肠间质瘤的疗效观察[J]. 中国肿瘤临床与康复,2021,28(05):590-594.
|
[12] |
魏星. 免疫治疗[J]. 中国科技术语,2019,21(02):79-80.
|
[13] |
Sun J,Zheng Y,Mamun M,et al. Research progress of PD-1/PD-L1 immunotherapy in gastrointestinal tumors[J]. Biomedi Pharmacother,2020,129:110504.
|
[14] |
Vallilas C,Sarantis P,Kyriazoglou A,et al. Gastrointestinal Stromal Tumors(GISTs):Novel Therapeutic Strategies with Immunotherapy and Small Molecules[J]. Int J Mol Sci,2021,22(2):493.
|
[15] |
Pantaleo MA,Tarantino G,Agostinelli C,et al. Immune microenvironment profiling of gastrointestinal stromal tumors(GIST)shows gene expression patterns associated to immune checkpoint inhibitors response[J]. Oncoimmunology,2019,8(9):e1617588.
|
[16] |
Blakely AM,Matoso A,Patil PA,et al. Role of immune microenvironment in gastrointestinal stromal tumours[J]. Histopathology,2018,72(3):405-413.
|
[17] |
Labadie BW,Bao R,Luke JJ. Reimagining IDO Pathway Inhibition in Cancer Immunotherapy via Downstream Focus on the Tryptophan-Kynurenine-Aryl Hydrocarbon Axis[J]. Clin Cancer Res,2019,25(5):1462-1471.
|
[18] |
D'Angelo SP,Shoushtari AN,Keohan ML,et al. Combined KIT and CTLA-4 Blockade in Patients with Refractory GIST and Other Advanced Sarcomas:A Phase Ib Study of Dasatinib plus Ipilimumab[J]. Clin Cancer Res,2017,23(12):2972-2980.
|
[19] |
Dugage MR,Jones RL,Trent J,et al. Beyond the Driver Mutation:Immunotherapies in Gastrointestinal Stromal Tumors[J]. Front Immunol,2021,12:715727.
|
[20] |
Marcq E,Siozopoulou V,De Waele J,et al. Prognostic and predictive aspects of the tumor immune microenvironment and immune checkpoints in malignant pleural mesothelioma[J]. Oncoimmunology,2017,6(1):e1261241.
|
[21] |
Zhao R,Song Y,Wang Y,et al. PD-1/PD-L1 blockade rescue exhausted CD8+ T cells in gastrointestinal stromal tumours via the PI3K/Akt/mTOR signalling pathway[J]. Cell Prolif,2019,52(3):e12571.
|
[22] |
Zhang JQ,Zeng S,Vitiello GA,et al. Macrophages and CD8(+)T Cells Mediate the Antitumor Efficacy of Combined CD40 Ligation and Imatinib Therapy in Gastrointestinal Stromal Tumors[J]. Cancer immunol Res,2018,6(4):434-447.
|
[23] |
Tan Y,Trent JC,Wilky BA,et al. Current status of immunotherapy for gastrointestinal stromal tumor[J]. Cancer Gene Ther,2017,24(3):130-133.
|
[24] |
Zhang Y,Zhang Z. The history and advances in cancer immunotherapy:understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications[J]. Cell Mol Immunol,2020,17(8):807-821.
|
[25] |
Abrams T,Connor A,Fanton C,et al. Preclinical Antitumor Activity of a Novel Anti-c-KIT Antibody-Drug Conjugate against Mutant and Wild-type c-KIT-Positive Solid Tumors[J]. Clin Cancer Res,2018,24(17):4297-4308.
|
[26] |
Abrams T,Connor A,Fanton C,et al. Preclinical Antitumor Activity of a Novel Anti-c-KIT Antibody Drug Conjugate against Mutant and Wild Type c-KIT Positive Solid Tumors[J]. Clinical Cancer Res,2018,24(17):4297-4308.
|
[27] |
Loaiza-Bonilla A,Bonilla-Reyes PA. Somatostatin Receptor Avidity in Gastrointestinal Stromal Tumors:Theranostic Implications of Gallium-68 Scan and Eligibility for Peptide Receptor Radionuclide Therapy[J]. Cureus,2017,9(9):e1710.
|
[28] |
Yuki K,Cheng N,Nakano M,et al. Organoid Models of Tumor Immunology[J]. Trends Immunol,2020,41(8):652-664.
|
[29] |
Bader JE,Voss K,Rathmell JC. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy[J]. Mol Cell,2020,78(6):1019-1033.
|
[30] |
Leko V,Rosenberg SA. Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors[J]. Cancer Cell,2020,38(4):454-472.
|
[31] |
Andrejeva G,Rathmell JC. Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors[J]. Cell Metab,2017,26(1):49-70.
|
[32] |
Garcia-Valverde A,Rosell J,Sayols S,et al. E3 ubiquitin ligase Atrogin-1 mediates adaptive resistance to KIT-targeted inhibition in gastrointestinal stromal tumor[J]. Oncogene,2021,40(48):6614-6626.
|
[33] |
Catalán M,Olmedo I,Faúndez J,et al. Medicinal Chemistry Targeting Mitochondria:From New Vehicles and Pharmacophore Groups to Old Drugs with Mitochondrial Activity[J]. Int J Mol Sci,2020,21(22):8464.
|
[34] |
Vitiello GA,Medina BD,Zeng S,et al. Mitochondrial Inhibition Augments the Efficacy of Imatinib by Resetting the Metabolic Phenotype of Gastrointestinal Stromal Tumor[J]. Clin Cancer Res,2018,24(4):972-984.
|