切换至 "中华医学电子期刊资源库"

中华普外科手术学杂志(电子版) ›› 2021, Vol. 15 ›› Issue (03) : 351 -354. doi: 10.3877/cma.j.issn.1674-3946.2021.03.031

所属专题: 文献

综述

低氧微环境对胰腺癌影响的研究进展
石浩伟1, 郝少龙1, 纪宇1, 孙浩2, 韩威1,()   
  1. 1. 首都医科大学附属北京潞河医院 普外科
  • 收稿日期:2020-12-26 出版日期:2021-06-26
  • 通信作者: 韩威

Research progress on the effect of hypoxic microenvironment on pancreatic cancer

Haowei Shi1, Shaolong Hao1, Yu Ji1, Hao Sun2, Wei Han1,()   

  1. 1. General Surgery, Beijing Luhe Hospital, Cappital Medical University, Beijing 101100, China
    2. Central Laboratories, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
  • Received:2020-12-26 Published:2021-06-26
  • Corresponding author: Wei Han
  • Supported by:
    Science and Technology Program of Tongzhou, Beijing(KJ2020CX006-10); Science and Technology Innovation Project of Science and Technology Commission of Tongzhou, Beijing(KJ2019CX014-05)
引用本文:

石浩伟, 郝少龙, 纪宇, 孙浩, 韩威. 低氧微环境对胰腺癌影响的研究进展[J]. 中华普外科手术学杂志(电子版), 2021, 15(03): 351-354.

Haowei Shi, Shaolong Hao, Yu Ji, Hao Sun, Wei Han. Research progress on the effect of hypoxic microenvironment on pancreatic cancer[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2021, 15(03): 351-354.

随着实体肿瘤的生长,90%的肿瘤细胞会形成低氧微环境。之所以胰腺癌能以其极低生存率成为"癌中之王",这与其突出的低氧微环境密切相关。在低氧微环境中,胰腺癌细胞通过代谢重编程、异常血管再生、细胞外基质调节以及上皮细胞间质转化等多重机制,来实现早期侵袭、转移和免疫逃避。此外,化疗耐药性以及免疫逃避机制也成为胰腺癌治愈率低的重要原因。本文对低氧微环境对胰腺癌的影响进行了总结,并梳理了相关分子机制,以期为进一步探究低氧微环境下胰腺癌发生、发展的分子机制指引方向。

With the growth of solid tumors, 90% of tumor cells form a hypoxic microenvironment. The reason why pancreatic cancer can become the " king of cancer" with its extremely low survival rate is closely related to its prominent hypoxic microenvironment. In the hypoxic microenvironment, pancreatic cancer cells achieve early invasion and metastasis and immune evasion through multiple mechanisms such as metabolic reconstruction, abnormal vascular regeneration, extracellular matrix regulation, and epithelial-mesenchymal transition, thereby increasing the death of pancreatic cancer patients rate. In addition, chemotherapy resistance and immune evasion mechanisms have also become important reasons for the low cure rate of pancreatic cancer. This article summarizes the impact of hypoxic microenvironment on pancreatic cancer and discusses the relevant mechanisms, hoping to provide clues for targeted therapy of pancreatic cancer in hypoxic microenvironment in the future.

[1]
Zheng RS, Sun KX, Zhang SW, et al. [Report of cancer epidemiology in China,2015][J]. Zhonghua Zhong Liu Za Zhi, 2019, 41(1): 19-28.
[2]
Xie H, Simon MC. Oxygen availability and metabolic reprogramming in cancer[J]. J Biol Chem, 2017,292(41): 16825-16832.
[3]
Yang Q-K, Wang X-X, Wang Y, et al. Integrative analysis reveals the landscape of hypoxia-inducible factor (HIF) family genes in pan-cancer[J]. J Oncol,2020 : 8873104.
[4]
Liu M, Zhong J, Zeng Z,et al. Hypoxia-induced feedback of HIF-1α and lncRNA-CF129 contributes to pancreatic cancer progression through stabilization of p53 protein[J]. Theranostics,2019,9(16): 4795-4810.
[5]
Liu Y, Zhu X, Zhou X,et al. Different polymorphisms in HIF-1α may exhibit different effects on cancer risk in Asians: evidence from nearly forty thousand participants[J]. Aging (Albany NY), 2020,12(21): 21329-21343.
[6]
Li S, Xu H-X, Wu C-T,et al. Angiogenesis in pancreatic cancer: current research status and clinical implications[J] .Angiogenesis,2019,22(1): 15-36.
[7]
Kisker O, Onizuka S, Banyard J,et al. Generation of multiple angiogenesis inhibitors by human pancreatic cancer[J]. Cancer Res,2001,61(19): 7298-7304.
[8]
Ye L-Y, Zhang Q, Bai X-L, et al. Hypoxia-inducible factor 1alpha expression and its clinical significance in pancreatic cancer: a meta-analysis[J]. Pancreatology,2014,14 (5): 391-397.
[9]
Klein CA. Cancer progression and the invisible phase of metastatic colonization[J]. Nat Rev Cancer, 2020,20(11): 681-694.
[10]
Yilmaz M, Christofori G. Mechanisms of motility in metastasizing cells[J]. Mol Cancer Res,2010,8(5): 629-642.
[11]
Friedl P, Wolf K. Tube travel: the role of proteases in individual and collective cancer cell invasion[J]. Cancer Res,2008,68(18): 7247-7249.
[12]
Zhang S, Zhou X, Wang B, et al. Loss of VHL expression contributes to epithelial-mesenchymal transition in oral squamous cell carcinoma[J]. Oral Oncol,2014,50(9): 809-817.
[13]
Krishnamachary B, Zagzag D, Nagasawa H, et al. Hypoxiainducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B[J]. Cancer Res,2006,66(5): 2725-2731.
[14]
Zhang Q, Lou Y, Zhang J, et al. Hypoxia-inducible factor-2α promotes tumor progression and has crosstalk with Wnt/β-catenin signaling in pancreatic cancer[J]. Mol Cancer,2017,16(1): 119.
[15]
Chang Q, Jurisica I, Do T, et al. Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically grown primary xenografts of human pancreatic cancer[J]. Cancer Res,2011,71(8): 3110-3120.
[16]
Salnikov AV, Liu L, Platen M, et al. Hypoxia induces EMT in low and highly aggressive pancreatic tumor cells but only cells with cancer stem cell characteristics acquire pronounced migratory potential[J]. PLoS One,2012,7(9): e46391.
[17]
Hashimoto O, Shimizu K, Semba S, et al. Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1alpha-dependent manner in pancreatic cancer cells[J]. Pathobiology,2011,78(4): 181-192.
[18]
Katagiri T, Kobayashi M, Yoshimura M, et al. HIF-1 maintains a functional relationship between pancreatic cancer cells and stromal fibroblasts by upregulating expression and secretion of Sonic hedgehog[J]. Oncotarget,2018,9(12): 10525-10535.
[19]
Miller BW, Morton JP, Pinese M, et al. Targeting the LOX/ hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy[J]. EMBO Mol Med,2015,7(8): 1063-1076.
[20]
Liu WS, Wu MF, Tseng HC, et al. The role of pretreatment FDG-PET in nasopharyngeal carcinoma treated with intensity-modulated radiotherapy[J]. Int J Radiat Oncol Biol Phys,2012,82(2): 561-566.
[21]
Chaika NV, Gebregiworgis T, Lewallen ME, et al. MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer[J]. Proc Natl Acad Sci U S A,2012,109(34): 13787-13792.
[22]
Kim JW, Tchernyshyov I, Semenza GL, et al. HIF-1mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia[J]. Cell Metab,2006,3(3): 177-185.
[23]
Sonveaux P, Vegran F, Schroeder T, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice[J]. J Clin Invest,2008,118(12): 3930-3942.
[24]
Kong B, Qia C, Erkan M, et al. Overview on how oncogenic Kras promotes pancreatic carcinogenesis by inducing low intracellular ROS levels[J]. Front Physiol,2013,4: 246.
[25]
Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia[J]. Nature,2011,481(7381): 380-384.
[26]
Zhang D, Cui L, Li S, et al. Insulin and hypoxia-inducible factor-1 cooperate in pancreatic cancer cells to increase cell viability[J]. Oncol Lett,2015,10(3): 1545-1550.
[27]
刘文增,胡渊,张彩. 胰腺癌的肿瘤微环境及其免疫治疗研究进展[J]. 中国免疫学杂志,2018,34(12): 1901-1906.
[28]
Kramer RM, Russell J, Humm JL. Distribution of gemcitabine is nearly homogenous in two orthotopic murine models of pancreatic cancer[J]. Cancer Biother Radiopharm,2015,30(7): 299-304.
[29]
Yokoi K, Fidler IJ. Hypoxia increases resistance of human pancreatic cancer cells to apoptosis induced by gemcitabine[J]. Clin Cancer Res,2004,10(7): 2299-2306.
[30]
Okami J, Simeone DM, Logsdon CD. Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer[J]. Cancer Res,2004,64(15): 5338-5346.
[31]
Grasso C, Jansen G, Giovannetti E. Drug resistance in pancreatic cancer: Impact of altered energy metabolism[J]. Crit Rev Oncol Hematol,2017,114: 139-152.
[32]
Palta M, Godfrey D, Goodman KA, et al. Radiation Therapy for Pancreatic Cancer: Executive Summary of an ASTRO Clinical Practice Guideline[J]. Pract Radiat Oncol,2019,9(5): 322-332.
[33]
Meijer TWH, Kaanders JHAM, Span PN, et al. Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy[J]. Clin Cancer Res,2012,18(20): 5585-5594.
[34]
Moeller BJ, Cao Y, Li CY, et al. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules[J]. Cancer Cell,2004,5(5): 429-441.
[35]
Nagaraju GP, Zakka KM, Landry JC, et al. Inhibition of HSP90 overcomes resistance to chemotherapy and radiotherapy in pancreatic cancer[J]. Int J Cancer,2019,145(6): 1529-1537.
[36]
Tang L-R, Wu J-X, Cai S-L, et al. Prolyl hydroxylase domain 3 influences the radiotherapy efficacy of pancreatic cancer cells by targeting hypoxia-inducible factor-1α[J]. Onco Targets Ther,2018,11: 8507-8515.
[37]
Ahn DH, Ramanathan RK, Bekaii-Saab T. Emerging Therapies and Future Directions in Targeting the Tumor Stroma and Immune System in the Treatment of Pancreatic Adenocarcinoma[J]. Cancers (Basel),2018,10(6): 193.
[38]
Pillarisetty VG. The pancreatic cancer microenvironment: an immunologic battleground[J]. Oncoimmunology,2014,3(8): e950171.
[39]
Shibuya KC, Goel VK, Xiong W, et al. Pancreatic ductal adenocarcinoma contains an effector and regulatory immune cell infiltrate that is altered by multimodal neoadjuvant treatment[J]. PLoS One,2014,9(5): e96565.
[40]
Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment[J]. Nat Immunol,2013,14(10): 1014-1022.
[41]
Casazza A, Laoui D, Wenes M, et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity[J]. Cancer Cell,2013,24(6): 695-709.
[42]
Doedens AL, Stockmann C, Rubinstein MP, et al. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression[J]. Cancer Res,2010,70(19): 7465-7475.
[43]
Ostrand-Rosenberg S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity[J]. Cancer Immunol Immunother,2010,59(10): 1593-1600.
[44]
Pylayeva-Gupta Y, Das S, Handler JS, et al. IL35-Producing B Cells Promote the Development of Pancreatic Neoplasia[J]. Cancer Discov,2016,6(3): 247-255.
[45]
Schwartz M, Zhang Y, Rosenblatt JD. B cell regulation of the anti-tumor response and role in carcinogenesis[J]. J Immunother Cancer,2016,4: 40.
[46]
Martin SK, Diamond P, Williams SA, et al. Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells[J]. Haematologica,2010,95(5): 776-784.
[47]
Piovan E, Tosello V, Indraccolo S, et al. Differential regulation of hypoxia-induced CXCR4 triggering during B-cell development and lymphomagenesis[J]. Cancer Res,2007,67(18): 8605-8614.
[48]
Shah VM, Sheppard BC, Sears RC, et al. Hypoxia: Friend or Foe for drug delivery in Pancreatic Cancer[J]. Cancer Lett,2020,492: 63-70.
[1] 赵之明, 尹注增, 刘荣. 胰腺癌转化治疗及机器人胰体尾癌根治性切除[J]. 中华普通外科学文献(电子版), 2023, 17(02): 160-160.
[2] 宁涓, 王晓燕, 魏华萍. 白蛋白结合型紫杉醇治疗转移性胰腺癌的疗效观察[J]. 中华普通外科学文献(电子版), 2022, 16(06): 407-411.
[3] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[4] 潘玮瑄, 郝少龙, 韩威. 低氧微环境与实体恶性肿瘤m6A修饰的研究进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 461-464.
[5] 李泽乾, 郝少龙, 张博, 纪凯伦, 韩威. 外周血非编码RNA在胰腺癌中研究进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 217-220.
[6] 张太平, 翁桂湖, 刘悦泽. 不断推进中国腹腔镜胰腺癌手术规范化[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 120-123.
[7] 田锋, 郭俊超. 中国微创技术在胰腺癌手术中的应用现状和展望[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 124-128.
[8] 韩显林, 林伯铮, 洪夏飞. 腹腔镜胰腺癌手术研究进展及血管解剖要点[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 129-132.
[9] 毛永欢, 奚玲, 陆晨, 刘理想, 喻春钊, 沈晓菲. PI3K/Akt信号通路通过Plk1影响胰腺癌细胞PANC-1对吉西他滨的化疗敏感性[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 135-138.
[10] 李永宁, 付雪芹, 李英, 刘鹏, 刘松柏, 潘耀振. 基因相似序列家族成员126A靶向调控波形蛋白促进胰腺癌细胞侵袭和迁移及其机制[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 139-144.
[11] 张原, 李小龙, 王亚鹏. 胰腺癌中ANGPTL2蛋白与免疫抑制细胞浸润的关系及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 145-148.
[12] 郭伟林, 李运涛, 尚培中, 李晓武, 李伟. 胰腺癌S100A4和Midkine表达研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 149-152.
[13] 张博, 韩威, 郝少龙, 李泽乾, 纪智礼. 竞争内源性RNA在胰腺癌研究中的进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 213-216.
[14] 韩显林. 完全腹腔镜根治性胰十二指肠切除术(联合肠系膜上静脉切除人工血管重建)[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 133-133.
[15] 王迪, 吕少诚, 黄金灿, 潘飞, 姜涛, 郎韧. 肺腺癌胰腺转移伴门静脉侵犯一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 457-460.
阅读次数
全文


摘要