切换至 "中华医学电子期刊资源库"

中华普外科手术学杂志(电子版) ›› 2019, Vol. 13 ›› Issue (04) : 430 -432. doi: 10.3877/cma.j.issn.1674-3946.2019.04.035

所属专题: 文献

综述

蛋白相分离的相关研究进展
刘颂1, 王萌1, 管文贤1,()   
  1. 1. 210008 南京,南京大学医学院附属鼓楼医院普通外科
  • 收稿日期:2018-10-29 出版日期:2019-08-26
  • 通信作者: 管文贤

Recent Advances in protein phase separation

Song Liu1, Meng Wang1, Wenxian Guan1,()   

  1. 1. Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School
  • Received:2018-10-29 Published:2019-08-26
  • Corresponding author: Wenxian Guan
  • About author:
    Corresponding author: Guan Wenxian, Email:
  • Supported by:
    National Natural Science Foundation of China(81602103); Natural Science Foundation of Jiangsu Province(BK20160114); Distinguished Young Scholar Project of Medical Science and Technology Development Foundation of Nanjing Department of Health(JQX17005); Key Project of Medical Science and Technology Development Foundation of Nanjing Department of Health(YKK16114); Medical Research Program of Jiangsu Provincial Commission of Health and Family Planning(Q2017007); Wu Jieping Medical Foundation(320.2710.1817)
引用本文:

刘颂, 王萌, 管文贤. 蛋白相分离的相关研究进展[J]. 中华普外科手术学杂志(电子版), 2019, 13(04): 430-432.

Song Liu, Meng Wang, Wenxian Guan. Recent Advances in protein phase separation[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2019, 13(04): 430-432.

相分离(phase separation)是新近发现的一种细胞内同类物质的高效聚集方式。蛋白相分离在自然界广泛存在,是生物体响应外界刺激、自我保护的重要机制之一,参与调控多种病理生理学过程。蛋白相分离障碍造成蛋白异常聚集、沉积、变性,可能导致代谢、免疫、肿瘤等诸多疾病。本文拟总结该领域最近研究进展,从蛋白相分离的概念、病理生理学意义、鉴定方法等方面进行系统综述,并对该领域未来拟解决的关键问题进行展望。

Phase separation is recently discovered as an efficient way of aggregation among homogenous molecules. Protein phase separation is widely existed in biology, and serves as a responsive and protective pattern in various (patho-)physiological processes. Dysfunction of phase separation leads to pathological aggregation, sedimentation and degeneration of proteins, and associates to metabolic and immunological diseases as well as tumors. This review is dedicated to summarize recent advances in the concept, clinical significance and methodology of phase separation, and raise key issues to be elucidated in the future.

[1]
Dolgin E.What lava lamps and vinaigrette can teach us about cell biology[J]. Nature,2018,555(7696): 300-302.
[2]
Chong PA, Forman-Kay JD. Liquid-liquid phase separation in cellular signaling systems[J]. Curr Opin Struct Biol,2016,41:180-186.
[3]
Brangwynne CP, Eckmann CR, Courson DS, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation[J]. Science,2009,324(5935): 1729-1732.
[4]
Qamar S, Wang G, Randle SJ, et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions[J]. Cell,2018,173(3): 720-734.
[5]
Yoshizawa T, Ali R, Jiou J, et al. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites[J]. Cell,2018,173(3): 693-705.
[6]
Guo L, Kim HJ, Wang H, et al. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains[J]. Cell,2018,173(3): 677-692.
[7]
Hofweber M, Hutten S, Bourgeois B, et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation[J]. Cell,2018,173(3): 706-719.
[8]
Delarue M, Brittingham GP, Pfeffer S, et al.mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding[J]. Cell,2018,174(2): 338-349.
[9]
Wang J, Choi JM, Holehouse AS, et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins[J]. Cell,2018,174(3): 688-699.
[10]
Langdon EM, Qiu Y, Ghanbari Niaki A, et al. mRNA structure determines specificity of a polyQ-driven phase separation[J]. Science,2018,360(6391): 922-927.
[11]
Maharana S, Wang J, Papadopoulos DK, et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins[J]. Science,2018,360(6391): 918-921.
[12]
Polymenidou M. The RNA face of phase separation[J]. Science,2018,360(6391): 859-860.
[13]
Sabari BR, Dall’Agnese A, Boija A, et al. Coactivator condensation at super-enhancers links phase separation and gene control[J]. Science,2018,361(6400):pii: eaar3958.
[14]
Lu H, Yu D, Hansen AS, et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase III[J]. Nature,2018,558(7709): 318-323.
[15]
Rabouille C, Alberti S.Cell adaptation upon stress: the emerging role of membrane-less compartments[J]. Curr Opin Cell Biol,2017,47: 34-42.
[16]
Franzmann TM, Jahnel M, Pozniakovsky A, et al. Phase separation of a yeast prion protein promotes cellular fitness[J]. Science,2018,359(6371):pii: eaao5654.
[17]
Riback JA, Katanski CD, Kear-Scott JL, et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response[J]. Cell,2017,168(6): 1028-1040.
[18]
Sticking together to survive stress. Website: Mar. 09, 2017. 请作者提供出处!

URL    
[19]
Larson AG, Elnatan D, Keenen MM, et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin[J]. Nature,2017,547(7662): 236-240.
[20]
Patel A, Lee HO, Jawerth L, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation[J]. Cell,2015,162(5): 1066-1077.
[21]
Conicella AE, Zerze GH, Mittal J, et al.ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain[J].Structure,2016,24(9): 1537-1549.
[22]
Mackenzie IR, Nicholson AM, Sarkar M, et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics[J]. Neuron,2017,95(4): 808-816.
[23]
Ambadipudi S, Biernat J, Riedel D, et al. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau[J]. Nat Commun,2017,8(1): 275-275.
[24]
Wegmann S, Eftekharzadeh B, Tepper K, et al.Tau protein liquid-liquid phase separation can initiate tau aggregation[J]. EMBO J,2018,37(7):pii: e98049.
[25]
Molliex A, Temirov J, Lee J, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization[J]. Cell,2015,163(1): 123-133.
[26]
Boulay G, Sandoval GJ, Riggi N, et al. Cancer-specific retargeting of BAF complexes by a prion-like domain[J]. Cell,2017,171(1): 163-178.
[27]
Shorter J. Prion-like domains program Ewing’s sarcoma[J]. Cell,2017,171(1): 30-31.
[28]
Bouchard JJ, Otero JH, Scott DC, et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments[J]. Mol Cell,2018,72(1): 19-36.
[29]
Sun L, Wu J, Du F, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway[J]. Science,2013,339(6121): 786-791.
[30]
Wu J, Sun L, Chen X, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA[J]. Science,2013,339(6121): 826-830.
[31]
Gao D, Wu J, Wu YT, et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses[J]. Science,2013,341(6148): 903-906.
[32]
Li XD, Wu J, Gao D, et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects[J]. Science,2013,341(6152): 1390-1394.
[33]
Liu S, Feng M, Guan W. Mitochondrial DNA sensing by STING signaling participates in inflammation, cancer and beyond[J]. Int J Cancer,2016,139(4): 736-741.
[34]
Liu S, Zhang Y, Ren J, et al. Microbial DNA recognition by cGAS-STING and other sensors in dendritic cells in inflammatory bowel diseases[J]. Inflamm Bowel Dis,2015,21(4): 901-911.
[35]
Liu S, Xia Q, Wu X, et al. Stimulator of interferon genes in classical dendritic cells controls mucosal Th17 responses to cyclic dinucleotides for host defenses against microbial infections in gut[J]. Front Immunol,2018,9: 1085-1085.
[36]
Du M, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling[J]. Science,2018,361(6403): 704-709.
[37]
Ablasser A. Phase separation focuses DNA sensing[J]. Science,2018,361(6403): 646-647.
[38]
Hyman AA, Weber CA, Jülicher F. Liquid-liquid phase separation in biology[J]. Annu Rev Cell Dev Biol,2014,30: 39-58.
[39]
Banani SF, Lee HO, Hyman AA, et al. Biomolecular condensates: organizers of cellular biochemistry[J]. Nat Rev Mol Cell Biol,2017,18(5): 285-298.
[40]
Berry J, Brangwynne CP, Haataja M. Physical principles of intracellular organization via active and passive phase transitions[J]. Rep Prog Phys,2018,81(4): 046601-046601.
[1] 欧阳剑锋, 李炳权, 叶永恒, 胡少宇, 向阳. 关节镜联合富血小板血浆治疗粘连性肩周炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 765-772.
[2] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[3] 樊丽超, 郭瑾瑛, 陈鑫. 野生型RET与RET/PTC融合基因检测对甲状腺乳头状癌中央区淋巴结清扫的指导意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 631-635.
[4] 徐成, 王璐璐, 王少华. 洗脱液甲状腺球蛋白在甲状腺乳头状癌转移淋巴结中的应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 701-704.
[5] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[6] 赵立力, 王魁向, 张小冲, 李志远. 血沉与C-反应蛋白比值在假体周围感染中的诊断价值分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 351-355.
[7] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[8] 韩晓娟, 徐佳倩, 朱玉兰, 王莹, 李源, 冯珺, 邵东. HHLA2过表达胃癌细胞株构建及细胞功能的初步研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 373-377.
[9] 陆萍, 邹健. 凝血和纤维蛋白溶解标志物的动态变化对急性胰腺炎患者预后的评估价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 427-432.
[10] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[11] 秦维, 王丹, 孙玉, 霍玉玲, 祝素平, 郑艳丽, 薛瑞. 血清层粘连蛋白、Ⅳ型胶原蛋白对代偿期肝硬化食管胃静脉曲张出血的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 447-451.
[12] 卓徐鹏, 刘颖, 任菁菁. 感染性疾病与老年人低蛋白血症的相关性研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 896-899.
[13] 董青, 丁飞, 郭浩, 李峰. Nesfatin-1/NUCB2在幽门螺杆菌感染相关早期胃癌患者中的表达及临床意义[J]. 中华临床医师杂志(电子版), 2023, 17(07): 783-789.
[14] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
[15] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
阅读次数
全文


摘要