[1] |
Dolgin E.What lava lamps and vinaigrette can teach us about cell biology[J]. Nature,2018,555(7696): 300-302.
|
[2] |
Chong PA, Forman-Kay JD. Liquid-liquid phase separation in cellular signaling systems[J]. Curr Opin Struct Biol,2016,41:180-186.
|
[3] |
Brangwynne CP, Eckmann CR, Courson DS, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation[J]. Science,2009,324(5935): 1729-1732.
|
[4] |
Qamar S, Wang G, Randle SJ, et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions[J]. Cell,2018,173(3): 720-734.
|
[5] |
Yoshizawa T, Ali R, Jiou J, et al. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites[J]. Cell,2018,173(3): 693-705.
|
[6] |
Guo L, Kim HJ, Wang H, et al. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains[J]. Cell,2018,173(3): 677-692.
|
[7] |
Hofweber M, Hutten S, Bourgeois B, et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation[J]. Cell,2018,173(3): 706-719.
|
[8] |
Delarue M, Brittingham GP, Pfeffer S, et al.mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding[J]. Cell,2018,174(2): 338-349.
|
[9] |
Wang J, Choi JM, Holehouse AS, et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins[J]. Cell,2018,174(3): 688-699.
|
[10] |
Langdon EM, Qiu Y, Ghanbari Niaki A, et al. mRNA structure determines specificity of a polyQ-driven phase separation[J]. Science,2018,360(6391): 922-927.
|
[11] |
Maharana S, Wang J, Papadopoulos DK, et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins[J]. Science,2018,360(6391): 918-921.
|
[12] |
Polymenidou M. The RNA face of phase separation[J]. Science,2018,360(6391): 859-860.
|
[13] |
Sabari BR, Dall’Agnese A, Boija A, et al. Coactivator condensation at super-enhancers links phase separation and gene control[J]. Science,2018,361(6400):pii: eaar3958.
|
[14] |
Lu H, Yu D, Hansen AS, et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase III[J]. Nature,2018,558(7709): 318-323.
|
[15] |
Rabouille C, Alberti S.Cell adaptation upon stress: the emerging role of membrane-less compartments[J]. Curr Opin Cell Biol,2017,47: 34-42.
|
[16] |
Franzmann TM, Jahnel M, Pozniakovsky A, et al. Phase separation of a yeast prion protein promotes cellular fitness[J]. Science,2018,359(6371):pii: eaao5654.
|
[17] |
Riback JA, Katanski CD, Kear-Scott JL, et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response[J]. Cell,2017,168(6): 1028-1040.
|
[18] |
Sticking together to survive stress. Website: Mar. 09, 2017. 请作者提供出处!
URL
|
[19] |
Larson AG, Elnatan D, Keenen MM, et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin[J]. Nature,2017,547(7662): 236-240.
|
[20] |
Patel A, Lee HO, Jawerth L, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation[J]. Cell,2015,162(5): 1066-1077.
|
[21] |
Conicella AE, Zerze GH, Mittal J, et al.ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain[J].Structure,2016,24(9): 1537-1549.
|
[22] |
Mackenzie IR, Nicholson AM, Sarkar M, et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics[J]. Neuron,2017,95(4): 808-816.
|
[23] |
Ambadipudi S, Biernat J, Riedel D, et al. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau[J]. Nat Commun,2017,8(1): 275-275.
|
[24] |
Wegmann S, Eftekharzadeh B, Tepper K, et al.Tau protein liquid-liquid phase separation can initiate tau aggregation[J]. EMBO J,2018,37(7):pii: e98049.
|
[25] |
Molliex A, Temirov J, Lee J, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization[J]. Cell,2015,163(1): 123-133.
|
[26] |
Boulay G, Sandoval GJ, Riggi N, et al. Cancer-specific retargeting of BAF complexes by a prion-like domain[J]. Cell,2017,171(1): 163-178.
|
[27] |
Shorter J. Prion-like domains program Ewing’s sarcoma[J]. Cell,2017,171(1): 30-31.
|
[28] |
Bouchard JJ, Otero JH, Scott DC, et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments[J]. Mol Cell,2018,72(1): 19-36.
|
[29] |
Sun L, Wu J, Du F, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway[J]. Science,2013,339(6121): 786-791.
|
[30] |
Wu J, Sun L, Chen X, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA[J]. Science,2013,339(6121): 826-830.
|
[31] |
Gao D, Wu J, Wu YT, et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses[J]. Science,2013,341(6148): 903-906.
|
[32] |
Li XD, Wu J, Gao D, et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects[J]. Science,2013,341(6152): 1390-1394.
|
[33] |
Liu S, Feng M, Guan W. Mitochondrial DNA sensing by STING signaling participates in inflammation, cancer and beyond[J]. Int J Cancer,2016,139(4): 736-741.
|
[34] |
Liu S, Zhang Y, Ren J, et al. Microbial DNA recognition by cGAS-STING and other sensors in dendritic cells in inflammatory bowel diseases[J]. Inflamm Bowel Dis,2015,21(4): 901-911.
|
[35] |
Liu S, Xia Q, Wu X, et al. Stimulator of interferon genes in classical dendritic cells controls mucosal Th17 responses to cyclic dinucleotides for host defenses against microbial infections in gut[J]. Front Immunol,2018,9: 1085-1085.
|
[36] |
Du M, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling[J]. Science,2018,361(6403): 704-709.
|
[37] |
Ablasser A. Phase separation focuses DNA sensing[J]. Science,2018,361(6403): 646-647.
|
[38] |
Hyman AA, Weber CA, Jülicher F. Liquid-liquid phase separation in biology[J]. Annu Rev Cell Dev Biol,2014,30: 39-58.
|
[39] |
Banani SF, Lee HO, Hyman AA, et al. Biomolecular condensates: organizers of cellular biochemistry[J]. Nat Rev Mol Cell Biol,2017,18(5): 285-298.
|
[40] |
Berry J, Brangwynne CP, Haataja M. Physical principles of intracellular organization via active and passive phase transitions[J]. Rep Prog Phys,2018,81(4): 046601-046601.
|