切换至 "中华医学电子期刊资源库"

中华普外科手术学杂志(电子版) ›› 2023, Vol. 17 ›› Issue (02) : 221 -225. doi: 10.3877/cma.j.issn.1674-3946.2023.02.027

综述

自噬在脓毒症中的作用及靶向治疗研究进展
钟文涛1, 赵阳2, 沈晓菲3, 杜峻峰4,()   
  1. 1. 510515 广州,南方医科大学第二临床医学院
    2. 100101 北京,膜生物学国家重点实验室,中国科学院动物研究所
    3. 100853 北京,中国人民解放军总医院肝胆胰外科医学部
    4. 510515 广州,南方医科大学第二临床医学院;100853 北京,中国人民解放军总医院普通外科医学部
  • 收稿日期:2022-12-28 出版日期:2023-04-26
  • 通信作者: 杜峻峰

The role of autophagy in sepsis and progress in targeted therapy

Wentao Zhong1, Yang Zhao2, Xiaofei Shen3, Junfeng Du4,()   

  1. 1. The Second School of Clinical Medicine, Southern Medical University, Guangzhou Guangdong Province 510515, China
    2. State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
    3. Faculty of Hepato-Pancreato-Biliary Surgery, The 1st Medical Center of Chinese PLA General Hospital, Beijing 100853, China
    4. The Second School of Clinical Medicine, Southern Medical University, Guangzhou Guangdong Province 510515, China; Medical Department of General Surgery, The 1st Medical Center of Chinese PLA General Hospital, Beijing 100853, China
  • Received:2022-12-28 Published:2023-04-26
  • Corresponding author: Junfeng Du
  • Supported by:
    National Natural Science Foundation of China(81802846, 81970500, 81870393)
引用本文:

钟文涛, 赵阳, 沈晓菲, 杜峻峰. 自噬在脓毒症中的作用及靶向治疗研究进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 221-225.

Wentao Zhong, Yang Zhao, Xiaofei Shen, Junfeng Du. The role of autophagy in sepsis and progress in targeted therapy[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2023, 17(02): 221-225.

最新脓毒症定义为宿主对感染的反应失调引起威胁生命的器官功能障碍,具体发病机制尚未完全阐明。自噬作为各类物种间相对保守的调控细胞状态的重要形式,是机体对外界刺激的应答以吞噬外来病原体、损伤的细胞器以及降解失活的蛋白质形式来维持细胞的内部稳态和缓解脓毒症导致的多器官功能障碍(MODS)。免疫细胞功能障碍被认为是脓毒症患者预后不良的主要原因,目前尚缺乏特定的治疗方法。有证据表明利用多种药物激活自噬可以有效缓解脓毒症、改善免疫功能、提高生存率。调控自噬机制可能是逆转脓毒症患者免疫抑制状态的治疗新策略。

Sepsis is currently defined as life-threatening organ dysfunction caused by the host’s maladjusted response to infection. The specific pathogenesis has not been fully elucidated. Autophagy,as an important form of relatively conservative regulation of cell state among various species,is the body’s response to external stimuli in the form of phagocytosis of foreign pathogens,damaged organelles and degradation of inactivated proteins to maintain the internal homeostasis of cells and relieve multiple organ dysfunction caused by sepsis(MODS). Immune cell dysfunction is considered to be the main cause of poor prognosis in patients with sepsis,and specific treatment is still lacking. There is evidence that activation of autophagy with multiple drugs can effectively relieve sepsis,improve immune function and improve survival rate. Regulating autophagy mechanism may be a new therapeutic strategy to reverse immunosuppression in sepsis patients.

表1 通过调控自噬改善脓毒症的药物
[28]
Chuang YCSu WHLei HY,et al. Macrophage migration inhibitory factor induces autophagy via reactive oxygen species generation[J]. PLoS One20127(5):e37613.
[29]
Strother RKDanahy DBKotov DI,et al. Polymicrobial Sepsis Diminishes Dendritic Cell Numbers and Function Directly Contributing to Impaired Primary CD8 T Cell Responses In Vivo[J]. J Immunol2016197(11):4301-4311.
[30]
Xu LKwak MZhang W,et al. Time-dependent effect of E. coli LPS in spleen DC activation in vivo:Alteration of numbers,expression of co-stimulatory molecules,production of pro-inflammatory cytokines,and presentation of antigens[J]. Mol Immunol201785:205-213.
[31]
Meng YZhao ZZhu W,et al. CD155 blockade improves survival in experimental sepsis by reversing dendritic cell dysfunction[J]. Biochem Biophys Res Commun2017490(2):283-289.
[32]
Münz C. Autophagy and antigen presentation[J]. Cell Microbiol20068(6):891-898.
[33]
Severa MGiacomini EGafa V,et al. EBV stimulates TLR- and autophagy-dependent pathways and impairs maturation in plasmacytoid dendritic cells:implications for viral immune escape[J]. Eur J Immunol201343(1):147-158.
[34]
Manuse MJBriggs CMParks GD. Replication-independent activation of human plasmacytoid dendritic cells by the paramyxovirus SV5 Requires TLR7 and autophagy pathways[J]. Virology2010405(2):383-389.
[35]
Li GLiang XLotze MT. HMGB1:The Central Cytokine for All Lymphoid Cells[J]. Front Immunol20134:68.
[36]
Tang DKang RLivesey KM,et al. Endogenous HMGB1 regulates autophagy[J]. J Cell Biol2010190(5):881-892.
[37]
Duong SCondotta SARai D,et al. Polymicrobial sepsis alters antigen-dependent and -independent memory CD8 T cell functions[J]. J Immunol2014192(8):3618-3625.
[38]
Condotta SAKhan SHRai D,et al. Polymicrobial Sepsis Increases Susceptibility to Chronic Viral Infection and Exacerbates CD8+ T Cell Exhaustion[J]. J Immunol2015195(1):116-125.
[39]
Xie JCrepeau R LChen CW,et al. Sepsis erodes CD8(+)memory T cell-protective immunity against an EBV homolog in a 2B4-dependent manner[J]. J Leukoc Biol2019105(3):565-575.
[40]
Choi YJKim SBKim JH,et al. Impaired polyfunctionality of CD8(+)T cells in severe sepsis patients with human cytomegalovirus reactivation[J]. Exp Mol Med201749(9):e382.
[41]
Martin MDBadovinac VPGriffith TS. CD4 T Cell Responses and the Sepsis-Induced Immunoparalysis State[J]. Front Immunol202011:1364.
[42]
Liu PXiao ZYan H,et al. Baicalin suppresses Th1 and Th17 responses and promotes Treg response to ameliorate sepsis-associated pancreatic injury via the RhoA-ROCK pathway[J]. Int Immunopharmacol202086:106685.
[43]
Lin CWLo SHsu C,et al. T-cell autophagy deficiency increases mortality and suppresses immune responses after sepsis[J]. PLoS One20149(7):e102066.
[44]
Ying LZhao GJWu Y,et al. Mitofusin 2 Promotes Apoptosis of CD4(+)T Cells by Inhibiting Autophagy in Sepsis[J]. Mediators Inflamm20172017:4926205.
[45]
Howell GMGomez HCollage RD,et al. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice[J]. PLoS One20138(7):e69520.
[46]
Kabat AMHarrison OJRiffelmacher T,et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation[J]. Elife20165:e12444.
[47]
Pan PLiu XWu L,et al. TREM-1 promoted apoptosis and inhibited autophagy in LPS-treated HK-2 cells through the NF-kappaB pathway[J]. Int J Med Sci202118(1):8-17.
[48]
Kökten TGibot SLepage P,et al. TREM-1 Inhibition Restores Impaired Autophagy Activity and Reduces Colitis in Mice[J]. J Crohns Colitis201812(2):230-244.
[49]
Caër CGorreja FForsskåhl SK,et al. TREM-1+ Macrophages Define a Pathogenic Cell Subset in the Intestine of Crohn’s Disease Patients[J]. J Crohns Colitis202115(8):1346-1361.
[50]
Boufenzer ACarrasco KJolly L,et al. Potentiation of NETs release is novel characteristic of TREM-1 activation and the pharmacological inhibition of TREM-1 could prevent from the deleterious consequences of NETs release in sepsis[J]. Cell Mol Immunol202118(2):452-460.
[51]
Chen HGHan HZLi Y,et al. Hydrogen alleviated organ injury and dysfunction in sepsis:The role of cross-talk between autophagy and endoplasmic reticulum stress:Experimental research[J]. Int Immunopharmacol202078:106049.
[52]
Cho HIKim SJChoi JW,et al. Genipin alleviates sepsis-induced liver injury by restoring autophagy[J]. Br J Pharmacol2016173(6):980-991.
[53]
Xu YLi YLiu X,et al. SPIONs enhances IL-10-producing macrophages to relieve sepsis via Cav1-Notch1/HES1-mediated autophagy[J]. Int J Nanomedicine201914:6779-6797.
[1]
Perner AGordon ACDe Backer D,et al. Sepsis:frontiers in diagnosis,resuscitation and antibiotic therapy[J]. Intensive Care Med201642(12):1958-1969.
[2]
Shang SWu JLi X,et al. Artesunate interacts with the vitamin D receptor to reverse sepsis-induced immunosuppression in a mouse model via enhancing autophagy[J]. Br J Pharmacol2020177(18):4147-4165.
[3]
Xing WYang LPeng Y,et al. Ginsenoside Rg3 attenuates sepsis-induced injury and mitochondrial dysfunction in liver via AMPK-mediated autophagy flux[J]. Biosci Rep201737(4):BSR20170934.
[4]
Sun YYao XZhang QJ,et al. Beclin-1-Dependent Autophagy Protects the Heart During Sepsis[J]. Circulation2018138(20):2247-2262.
[5]
Zhang YWang LMeng L,et al. Sirtuin 6 overexpression relieves sepsis-induced acute kidney injury by promoting autophagy[J]. Cell Cycle201918(4):425-436.
[6]
Zhang WXHe BMWu Y,et al. Melatonin protects against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice[J]. Life Sci2019217:8-15.
[7]
Shi XLiu YZhang D,et al. Valproic acid attenuates sepsis-induced myocardial dysfunction in rats by accelerating autophagy through the PTEN/AKT/mTOR pathway[J]. Life Sci2019232:116613.
[8]
Carchman EHWhelan SLoughran P,et al. Experimental sepsis-induced mitochondrial biogenesis is dependent on autophagy,TLR4,and TLR9 signaling in liver[J]. Faseb J201327(12):4703-4711.
[9]
Rocheteau PChatre LBriand D,et al. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy[J]. Nat Commun20156:10145.
[10]
Bravo-San Pedro JMKroemer GGalluzzi L. Autophagy and Mitophagy in Cardiovascular Disease[J]. Circ Res2017120(11):1812-1824.
[11]
Kohoutová MDejmek JTůma Z,et al. Variability of mitochondrial respiration in relation to sepsis-induced multiple organ dysfunction[J]. Physiol Res201867(Suppl 4):S577-S592.
[12]
Dikic IElazar Z. Mechanism and medical implications of mammalian autophagy[J]. Nat Rev Mol Cell Biol201819(6):349-364.
[13]
Sui XKong NYe L,et al. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents[J]. Cancer Lett2014344(2):174-179.
[14]
刘颂,管文贤. 线粒体DNA经STING信号通路介导免疫应答的研究进展[J/CD]. 中华普外科手术学杂志(电子版)201913(03):320-322.
[15]
Zhang DLZhang SWCheng QH,et al. Effects of peritoneal macrophage autophagy on the immune function of sepsis mice[J]. Am J Clin Exp Immunol20176(4):52-59.
[16]
Teng MWBowman EPMcelwee JJ,et al. IL-12 and IL-23 cytokines:from discovery to targeted therapies for immune-mediated inflammatory diseases[J]. Nat Med201521(7):719-729.
[17]
Wang XQIn WXu X,et al. Endotoxin-induced autocrine ATP signaling inhibits neutrophil chemotaxis through enhancing myosin light chain phosphorylation[J]. Proc Natl Acad Sci U S A2017114(17):4483-4488.
[18]
Shen XCao KZhao Y,et al. Targeting Neutrophils in Sepsis:From Mechanism to Translation[J]. Front Pharmacol202112:644270.
[19]
Ramachandran GGade PTsai P,et al. Potential role of autophagy in the bactericidal activity of human PMNs for Bacillus anthracis[J]. Pathog Dis201573(9):ftv080.
[20]
黄佳敏,孙燃,戚欣欣,等. 自噬对脓毒症小鼠中性粒细胞程序性死亡配体-1表达的影响[J]. 中华危重病急救医学201931(09):1091-1096.
[21]
Park SYShrestha SYoun YJ,et al. Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during Sepsis[J]. Am J Respir Crit Care Med2017196(5):577-589.
[22]
Qiu PLiu YZhang J. Review:the Role and Mechanisms of Macrophage Autophagy in Sepsis[J]. Inflammation201942(1):6-19.
[23]
Xu FMa YHuang W,et al. Typically inhibiting USP14 promotes autophagy in M1-like macrophages and alleviates CLP-induced sepsis[J]. Cell Death Dis202011(8):666.
[24]
Pu QGan CLi R,et al. Atg7 Deficiency Intensifies Inflammasome Activation and Pyroptosis in Pseudomonas Sepsis[J]. J Immunol2017198(8):3205-3213.
[25]
Saitoh TAkira S. Regulation of inflammasomes by autophagy[J]. J Allergy Clin Immunol2016138(1):28-36.
[26]
Zhang YMorgan MJChen K,et al. Induction of autophagy is essential for monocyte-macrophage differentiation[J]. Blood2012119(12):2895-2905.
[27]
Lee JPWFoote AFan H,et al. Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages[J]. Autophagy201612(6):907-916.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[3] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[4] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[5] 王璐, 樊杨. 子宫内膜癌相关生物标志物研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 511-516.
[6] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[7] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[8] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[9] 闫甲, 刘双池, 王政宇. 胆囊癌肿瘤标志物的研究和应用进展[J]. 中华普通外科学文献(电子版), 2023, 17(05): 391-394.
[10] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[11] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[12] 吴寅, 陈智琴, 高勇, 权明. Her-2阳性结直肠癌的诊治进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 420-425.
[13] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要