切换至 "中华医学电子期刊资源库"

中华普外科手术学杂志(电子版) ›› 2023, Vol. 17 ›› Issue (02) : 213 -216. doi: 10.3877/cma.j.issn.1674-3946.2023.02.025

综述

竞争内源性RNA在胰腺癌研究中的进展
张博1, 韩威2,(), 郝少龙3, 李泽乾4, 纪智礼1   
  1. 1. 101149 北京,首都医科大学附属北京潞河医院普外科
    2. 101149 北京,首都医科大学附属北京潞河医院普外科;中心实验室;医疗保健病区
    3. 101149 北京,首都医科大学附属北京潞河医院普外科;中心实验室
    4. 中心实验室
  • 收稿日期:2022-05-24 出版日期:2023-04-26
  • 通信作者: 韩威

Advances in competing endogenous Rnas in pancreatic cancer

Bo Zhang1, Wei Han2,(), Shaolong Hao3, Zeqian Li4, Zhili Ji1   

  1. 1. Department of General Surgery
    2. Department of General Surgery; Central Lab; Cadre Healthcare Ward, The Affiliated Luhe Hospital of Capital Medical University, Beijing 101149, China
    3. Department of General Surgery; Central Lab
    4. Central Lab
  • Received:2022-05-24 Published:2023-04-26
  • Corresponding author: Wei Han
  • Supported by:
    National Natural Science Foundation of China in 2019(51973125); Capital’s Funds for Health Improvement and Research(2022-2-7081); Beijing Tongzhou District Technology Project(KJ2022CX016)
引用本文:

张博, 韩威, 郝少龙, 李泽乾, 纪智礼. 竞争内源性RNA在胰腺癌研究中的进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 213-216.

Bo Zhang, Wei Han, Shaolong Hao, Zeqian Li, Zhili Ji. Advances in competing endogenous Rnas in pancreatic cancer[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2023, 17(02): 213-216.

胰腺癌是恶性程度极高的消化系统肿瘤,胰腺导管腺癌(PDAC)是胰腺癌中最常见的一种病理类型。目前诊断胰腺癌的生物学指标仍有限,且特异性有待进一步提升。胰腺癌普遍发病隐匿,进展快,机制不确定。近年来已出现了大量有关胰腺癌生物学功能相关的分子生物学研究,竞争性内源RNA(ceRNA)假说是研究较多的假说之一。有研究表明,长链非编码RNA(lncRNA)、环状RNA(circRNA)、假基因可作为ceRNA参与ceRNA网络构建,通过相应的途径影响胰腺癌细胞的生物学功能。近年来大量的研究发现ceRNA在胰腺癌的产生、发展以及对化疗药物的耐药性等方面中发挥重要作用。本文旨在对近年来有关ceRNA在胰腺癌细胞生物学功能的影响作出系统性的总结和分析,并对未来的相关研究提出参考方向。

Pancreatic cancer is a highly malignant digestive system tumor,and pancreatic ductal adenocarcinoma(PDAC)is the most common pathological type of pancreatic cancer. At present,the biological indicators for the diagnosis of pancreatic cancer are still limited,and the specificity needs to be further improved. Pancreatic cancer is a common disease with occult onset,rapid progression and uncertain mechanism. In recent years,there have been a lot of molecular studies on the biological function of pancreatic cancer,and the competitive endogenous RNA(ceRNA)hypothesis is one of the most studied hypotheses. Studies have shown that long non-coding Rnas(lncrnas),circrnas(circrnas)and pseudogenes can be used as CERnas to participate in the construction of ceRNA networks and affect the biological function of pancreatic cancer cells through corresponding pathways. In recent years,a large number of studies have found that ceRNA plays an important role in the generation,development and resistance to chemotherapy drugs of pancreatic cancer. The purpose of this paper is to systematically summarize and analyze the effects of ceRNA on biological function of pancreatic cancer cells in recent years,and to provide reference for future research.

表1 常见的LncRNA作为 ceRNA在胰腺癌中的调控作用
表2 常见的CircRNA作为ceRNA在胰腺癌中的调控作用
[1]
赵建国,廖泉,赵玉沛. 胰腺癌分子标志物研究进展[J/CD]. 中华普外科手术学杂志(电子版)20137(03):224-226.
[2]
Salmena LPoliseno LTay Y,et al. A ceRNA Hypothesis:The Rosetta Stone of a Hidden RNA Language?[J]. Cell2011146(3):353-358.
[3]
Tay YRinn JPandolfi P P. The multilayered complexity of ceRNA crosstalk and competition[J]. Nature2014505(7483):344-352.
[4]
Necsulea ASoumillon MWarnefors M,et al. The evolution of lncRNA repertoires and expression patterns in tetrapods[J]. Nature2014505(7485):635-640.
[5]
Zhang H DJiang L HSun D W,et al. CircRNA:a novel type of biomarker for cancer[J]. Breast Cancer201825(1):1-7.
[6]
Lou WDing BFu P. Pseudogene-Derived lncRNAs and Their miRNA Sponging Mechanism in Human Cancer[J]. Front Cell Dev Biol20208:85.
[7]
Liu PPan YWang D,et al. Long non-coding RNA XIST promotes cell proliferation of pancreatic cancer through miR-137 and Notch1 pathway[J]. Eur Rev Med Pharmacol Sci202024(23):12161-12170.
[8]
Han QLi JXiong J,et al. Long noncoding RNA LINC00514 accelerates pancreatic cancer progression by acting as a ceRNA of miR-28-5p to upregulate Rap1b expression[J]. J Exp Clin Cancer Res202039(1):151.
[9]
Guo ZWang XYang Y,et al. Hypoxic Tumor-Derived Exosomal Long Noncoding RNA UCA1 Promotes Angiogenesis via miR-96-5p/AMOTL2 in Pancreatic Cancer[J]. Molecular Therapy - Nucleic Acids202022:179-195.
[10]
Xiong GLiu CYang G,et al. Long noncoding RNA GSTM3TV2 upregulates LAT2 and OLR1 by competitively sponging let-7 to promote gemcitabine resistance in pancreatic cancer[J]. Journal of Hematology & Oncology201912(1):97.
[11]
Lei SHe ZChen T,et al. Long noncoding RNA 00976 promotes pancreatic cancer progression through OTUD7B by sponging miR-137 involving EGFR/MAPK pathway[J]. J Exp Clin Cancer Res201938(1):470.
[12]
Liu YWang JDong L,et al. Long Noncoding RNA HCP5 Regulates Pancreatic Cancer Gemcitabine(GEM)Resistance By Sponging Hsa-miR-214-3p To Target HDGF[J]. Onco Targets Ther201912:8207-8216.
[13]
Sun YWang PYang W,et al. The role of lncRNA MSC-AS1/miR-29b-3p axis-mediated CDK14 modulation in pancreatic cancer proliferation and Gemcitabine-induced apoptosis[J]. Cancer Biology & Therapy201920(6):729-739.
[14]
Hua YZhu YXie G,et al. Long non-coding SBF2-AS1 acting as a competing endogenous RNA to sponge microRNA-142-3p to participate in gemcitabine resistance in pancreatic cancer via upregulating TWF1[J]. Aging(Albany NY)201911(20):8860-8878.
[15]
Ling SHe YLi X,et al. CircRHOT1 mediated cell proliferation,apoptosis and invasion of pancreatic cancer cells by sponging miR‐125a‐3p[J]. Journal of cellular and molecular medicine202024(17):9881-9889.
[16]
Han XFang YChen P,et al. Upregulated circRNA hsa_circ_0071036 promotes tumourigenesis of pancreatic cancer by sponging miR-489 and predicts unfavorable characteristics and prognosis[J]. Cell Cycle202120(4):369-382.
[17]
Wong CHLou UKLi Y,et al. CircFOXK2 Promotes Growth and Metastasis of Pancreatic Ductal Adenocarcinoma by Complexing with RNA-Binding Proteins and Sponging MiR-942[J]. Cancer Res202080(11):2138-2149.
[18]
Shen PYang TChen Q,et al. CircNEIL3 regulatory loop promotes pancreatic ductal adenocarcinoma progression via miRNA sponging and A-to-I RNA-editing[J]. Mol Cancer202120(1):51.
[19]
Kong YLi YLuo Y,et al. circNFIB1 inhibits lymphangiogenesis and lymphatic metastasis via the miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer[J]. Mol Cancer202019(1):82.
[20]
Han XFang YChen P,et al. Upregulated circRNA hsa_circ_0071036 promotes tumourigenesis of pancreatic cancer by sponging miR-489 and predicts unfavorable characteristics and prognosis[J]. Cell Cycle202120(4):369-382.
[21]
Yu SWang MZhang H,et al. Circ_0092367 Inhibits EMT and Gemcitabine Resistance in Pancreatic Cancer via Regulating the miR-1206/ESRP1 Axis[J]. Genes(Basel)202112(11):1701.
[22]
Ma HWXie MSun M,et al. The pseudogene derived long noncoding RNA DUXAP8 promotes gastric cancer cell proliferation and migration via epigenetically silencing PLEKHO1 expression[J]. Oncotarget20178(32):52211-52224.
[23]
Huang WLi NHu J,et al. Inhibitory effect of RNA-mediated knockdown of zinc finger protein 91 pseudogene on pancreatic cancer cell growth and invasion[J]. Oncol Lett201612(2):1343-1348.
[24]
Lian YYang JLian Y,et al. DUXAP8,a pseudogene derived lncRNA,promotes growth of pancreatic carcinoma cells by epigenetically silencing CDKN1A and KLF2[J]. Cancer Commun(Lond)201838(1):64.
[25]
Abue MYokoyama MShibuya R,et al. Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer[J]. Int J Oncol201546(2):539-547.
[26]
Cao RWang KLong M,et al. miR-3613-5p enhances the metastasis of pancreatic cancer by targeting CDK6[J]. Cell Cycle202019(22):3086-3095.
[27]
Xu BLiu JXiang X,et al. Expression of miRNA-143 in Pancreatic Cancer and Its Clinical Significance[J]. Cancer Biother Radiopharm201833(9):373-379.
[28]
Yu YTong YZhong A,et al. Identification of Serum microRNA-25 as a novel biomarker for pancreatic cancer[J]. Medicine(Baltimore)202099(52):e23863.
[29]
Guz MJeleniewicz WCybulski M,et al. Serum miR-210-3p can be used to differentiate between patients with pancreatic ductal adenocarcinoma and chronic pancreatitis[J]. Biomed Rep202114(1):10.
[30]
Meng QLiang CHua J,et al. A miR-146a-5p/TRAF6/NF-kB p65 axis regulates pancreatic cancer chemoresistance:functional validation and clinical significance[J]. Theranostics202010(9):3967-3979.
[31]
Zibitt M M SHartford CCRLal A. Interrogating lncRNA functions via CRISPR/Cas systems[J]. RNA Biol202118(12):2097-2106.
[1] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[2] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[3] 朱韵莹, 高晓琳, 戈艳萍, 王张嵩, 林钊宇, 李劲松, 武东辉. 缺氧相关的长链非编码RNA LINC00970在唾液腺腺样囊性癌中的表达及其作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 210-217.
[4] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[5] 纪文鑫, 王茂, 邱春丽, 李尚鹏, 代引海. 血清外泌体circ PVT1与circ 0014606在三阴性乳腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 267-271.
[6] 王邦郁, 陈晓鹏, 唐国军, 王佳妮. 尿液细胞外囊泡circRNA分类器对高级别前列腺癌诊断价值的初步研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 339-342.
[7] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[8] 朱超男, 王帅, 王文博, 郑贸根, 程远, 陈志全. 非小细胞肺癌患者组织miR-31-5p表达与临床病理特征及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 508-510.
[9] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[10] 王迪, 吕少诚, 黄金灿, 潘飞, 姜涛, 郎韧. 肺腺癌胰腺转移伴门静脉侵犯一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 457-460.
[11] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[12] 王珊, 马清, 姚兰, 杨华昱. 老年维持性血透患者叶酸治疗与miR-150-5p血清水平的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 139-144.
[13] 王健, 赵海剑, 孙静, 张晓雨, 陈柏羽. LncRNA SNHG4表达与结直肠癌预后的关系[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 139-144.
[14] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要