切换至 "中华医学电子期刊资源库"

中华普外科手术学杂志(电子版) ›› 2023, Vol. 17 ›› Issue (02) : 213 -216. doi: 10.3877/cma.j.issn.1674-3946.2023.02.025

综述

竞争内源性RNA在胰腺癌研究中的进展
张博1, 韩威2,(), 郝少龙3, 李泽乾4, 纪智礼1   
  1. 1. 101149 北京,首都医科大学附属北京潞河医院普外科
    2. 101149 北京,首都医科大学附属北京潞河医院普外科;中心实验室;医疗保健病区
    3. 101149 北京,首都医科大学附属北京潞河医院普外科;中心实验室
    4. 中心实验室
  • 收稿日期:2022-05-24 出版日期:2023-04-26
  • 通信作者: 韩威

Advances in competing endogenous Rnas in pancreatic cancer

Bo Zhang1, Wei Han2,(), Shaolong Hao3, Zeqian Li4, Zhili Ji1   

  1. 1. Department of General Surgery
    2. Department of General Surgery; Central Lab; Cadre Healthcare Ward, The Affiliated Luhe Hospital of Capital Medical University, Beijing 101149, China
    3. Department of General Surgery; Central Lab
    4. Central Lab
  • Received:2022-05-24 Published:2023-04-26
  • Corresponding author: Wei Han
  • Supported by:
    National Natural Science Foundation of China in 2019(51973125); Capital’s Funds for Health Improvement and Research(2022-2-7081); Beijing Tongzhou District Technology Project(KJ2022CX016)
引用本文:

张博, 韩威, 郝少龙, 李泽乾, 纪智礼. 竞争内源性RNA在胰腺癌研究中的进展[J/OL]. 中华普外科手术学杂志(电子版), 2023, 17(02): 213-216.

Bo Zhang, Wei Han, Shaolong Hao, Zeqian Li, Zhili Ji. Advances in competing endogenous Rnas in pancreatic cancer[J/OL]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2023, 17(02): 213-216.

胰腺癌是恶性程度极高的消化系统肿瘤,胰腺导管腺癌(PDAC)是胰腺癌中最常见的一种病理类型。目前诊断胰腺癌的生物学指标仍有限,且特异性有待进一步提升。胰腺癌普遍发病隐匿,进展快,机制不确定。近年来已出现了大量有关胰腺癌生物学功能相关的分子生物学研究,竞争性内源RNA(ceRNA)假说是研究较多的假说之一。有研究表明,长链非编码RNA(lncRNA)、环状RNA(circRNA)、假基因可作为ceRNA参与ceRNA网络构建,通过相应的途径影响胰腺癌细胞的生物学功能。近年来大量的研究发现ceRNA在胰腺癌的产生、发展以及对化疗药物的耐药性等方面中发挥重要作用。本文旨在对近年来有关ceRNA在胰腺癌细胞生物学功能的影响作出系统性的总结和分析,并对未来的相关研究提出参考方向。

Pancreatic cancer is a highly malignant digestive system tumor,and pancreatic ductal adenocarcinoma(PDAC)is the most common pathological type of pancreatic cancer. At present,the biological indicators for the diagnosis of pancreatic cancer are still limited,and the specificity needs to be further improved. Pancreatic cancer is a common disease with occult onset,rapid progression and uncertain mechanism. In recent years,there have been a lot of molecular studies on the biological function of pancreatic cancer,and the competitive endogenous RNA(ceRNA)hypothesis is one of the most studied hypotheses. Studies have shown that long non-coding Rnas(lncrnas),circrnas(circrnas)and pseudogenes can be used as CERnas to participate in the construction of ceRNA networks and affect the biological function of pancreatic cancer cells through corresponding pathways. In recent years,a large number of studies have found that ceRNA plays an important role in the generation,development and resistance to chemotherapy drugs of pancreatic cancer. The purpose of this paper is to systematically summarize and analyze the effects of ceRNA on biological function of pancreatic cancer cells in recent years,and to provide reference for future research.

表1 常见的LncRNA作为 ceRNA在胰腺癌中的调控作用
表2 常见的CircRNA作为ceRNA在胰腺癌中的调控作用
[1]
赵建国,廖泉,赵玉沛. 胰腺癌分子标志物研究进展[J/CD]. 中华普外科手术学杂志(电子版)20137(03):224-226.
[2]
Salmena LPoliseno LTay Y,et al. A ceRNA Hypothesis:The Rosetta Stone of a Hidden RNA Language?[J]. Cell2011146(3):353-358.
[3]
Tay YRinn JPandolfi P P. The multilayered complexity of ceRNA crosstalk and competition[J]. Nature2014505(7483):344-352.
[4]
Necsulea ASoumillon MWarnefors M,et al. The evolution of lncRNA repertoires and expression patterns in tetrapods[J]. Nature2014505(7485):635-640.
[5]
Zhang H DJiang L HSun D W,et al. CircRNA:a novel type of biomarker for cancer[J]. Breast Cancer201825(1):1-7.
[6]
Lou WDing BFu P. Pseudogene-Derived lncRNAs and Their miRNA Sponging Mechanism in Human Cancer[J]. Front Cell Dev Biol20208:85.
[7]
Liu PPan YWang D,et al. Long non-coding RNA XIST promotes cell proliferation of pancreatic cancer through miR-137 and Notch1 pathway[J]. Eur Rev Med Pharmacol Sci202024(23):12161-12170.
[8]
Han QLi JXiong J,et al. Long noncoding RNA LINC00514 accelerates pancreatic cancer progression by acting as a ceRNA of miR-28-5p to upregulate Rap1b expression[J]. J Exp Clin Cancer Res202039(1):151.
[9]
Guo ZWang XYang Y,et al. Hypoxic Tumor-Derived Exosomal Long Noncoding RNA UCA1 Promotes Angiogenesis via miR-96-5p/AMOTL2 in Pancreatic Cancer[J]. Molecular Therapy - Nucleic Acids202022:179-195.
[10]
Xiong GLiu CYang G,et al. Long noncoding RNA GSTM3TV2 upregulates LAT2 and OLR1 by competitively sponging let-7 to promote gemcitabine resistance in pancreatic cancer[J]. Journal of Hematology & Oncology201912(1):97.
[11]
Lei SHe ZChen T,et al. Long noncoding RNA 00976 promotes pancreatic cancer progression through OTUD7B by sponging miR-137 involving EGFR/MAPK pathway[J]. J Exp Clin Cancer Res201938(1):470.
[12]
Liu YWang JDong L,et al. Long Noncoding RNA HCP5 Regulates Pancreatic Cancer Gemcitabine(GEM)Resistance By Sponging Hsa-miR-214-3p To Target HDGF[J]. Onco Targets Ther201912:8207-8216.
[13]
Sun YWang PYang W,et al. The role of lncRNA MSC-AS1/miR-29b-3p axis-mediated CDK14 modulation in pancreatic cancer proliferation and Gemcitabine-induced apoptosis[J]. Cancer Biology & Therapy201920(6):729-739.
[14]
Hua YZhu YXie G,et al. Long non-coding SBF2-AS1 acting as a competing endogenous RNA to sponge microRNA-142-3p to participate in gemcitabine resistance in pancreatic cancer via upregulating TWF1[J]. Aging(Albany NY)201911(20):8860-8878.
[15]
Ling SHe YLi X,et al. CircRHOT1 mediated cell proliferation,apoptosis and invasion of pancreatic cancer cells by sponging miR‐125a‐3p[J]. Journal of cellular and molecular medicine202024(17):9881-9889.
[16]
Han XFang YChen P,et al. Upregulated circRNA hsa_circ_0071036 promotes tumourigenesis of pancreatic cancer by sponging miR-489 and predicts unfavorable characteristics and prognosis[J]. Cell Cycle202120(4):369-382.
[17]
Wong CHLou UKLi Y,et al. CircFOXK2 Promotes Growth and Metastasis of Pancreatic Ductal Adenocarcinoma by Complexing with RNA-Binding Proteins and Sponging MiR-942[J]. Cancer Res202080(11):2138-2149.
[18]
Shen PYang TChen Q,et al. CircNEIL3 regulatory loop promotes pancreatic ductal adenocarcinoma progression via miRNA sponging and A-to-I RNA-editing[J]. Mol Cancer202120(1):51.
[19]
Kong YLi YLuo Y,et al. circNFIB1 inhibits lymphangiogenesis and lymphatic metastasis via the miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer[J]. Mol Cancer202019(1):82.
[20]
Han XFang YChen P,et al. Upregulated circRNA hsa_circ_0071036 promotes tumourigenesis of pancreatic cancer by sponging miR-489 and predicts unfavorable characteristics and prognosis[J]. Cell Cycle202120(4):369-382.
[21]
Yu SWang MZhang H,et al. Circ_0092367 Inhibits EMT and Gemcitabine Resistance in Pancreatic Cancer via Regulating the miR-1206/ESRP1 Axis[J]. Genes(Basel)202112(11):1701.
[22]
Ma HWXie MSun M,et al. The pseudogene derived long noncoding RNA DUXAP8 promotes gastric cancer cell proliferation and migration via epigenetically silencing PLEKHO1 expression[J]. Oncotarget20178(32):52211-52224.
[23]
Huang WLi NHu J,et al. Inhibitory effect of RNA-mediated knockdown of zinc finger protein 91 pseudogene on pancreatic cancer cell growth and invasion[J]. Oncol Lett201612(2):1343-1348.
[24]
Lian YYang JLian Y,et al. DUXAP8,a pseudogene derived lncRNA,promotes growth of pancreatic carcinoma cells by epigenetically silencing CDKN1A and KLF2[J]. Cancer Commun(Lond)201838(1):64.
[25]
Abue MYokoyama MShibuya R,et al. Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer[J]. Int J Oncol201546(2):539-547.
[26]
Cao RWang KLong M,et al. miR-3613-5p enhances the metastasis of pancreatic cancer by targeting CDK6[J]. Cell Cycle202019(22):3086-3095.
[27]
Xu BLiu JXiang X,et al. Expression of miRNA-143 in Pancreatic Cancer and Its Clinical Significance[J]. Cancer Biother Radiopharm201833(9):373-379.
[28]
Yu YTong YZhong A,et al. Identification of Serum microRNA-25 as a novel biomarker for pancreatic cancer[J]. Medicine(Baltimore)202099(52):e23863.
[29]
Guz MJeleniewicz WCybulski M,et al. Serum miR-210-3p can be used to differentiate between patients with pancreatic ductal adenocarcinoma and chronic pancreatitis[J]. Biomed Rep202114(1):10.
[30]
Meng QLiang CHua J,et al. A miR-146a-5p/TRAF6/NF-kB p65 axis regulates pancreatic cancer chemoresistance:functional validation and clinical significance[J]. Theranostics202010(9):3967-3979.
[31]
Zibitt M M SHartford CCRLal A. Interrogating lncRNA functions via CRISPR/Cas systems[J]. RNA Biol202118(12):2097-2106.
[1] 刘伟, 牛云峰, 安杰. LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 330-338.
[2] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[3] 马中正, 杨云川, 马翔, 周迟, 丁丁, 霍俊一, 徐楠, 崔培元, 周磊. 胰腺癌双硫死亡相关的lncRNA预后模型的构建及免疫反应研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 368-376.
[4] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[5] 魏孔源, 仵正, 王铮, 黎韡. 机器人胰腺中段切除后远端胰腺消化道不同重建方式初探[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 295-300.
[6] 郭诗翔, 谭明达, 王槐志. 胰头癌淋巴结清扫再思考[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 625-628.
[7] 张昊, 潘卫东. 胰腺癌新辅助化疗后可切除性评估现状及进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 629-633.
[8] 周倜, 吴嘉, 韩方, 徐林伟, 张宇华. 新辅助治疗时代胰腺癌淋巴结清扫研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 634-639.
[9] 王军华, 王锐炫. 胰腺癌新辅助化疗现状和治疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 640-643.
[10] 魏妙艳, 徐近. 合并远处转移胰腺癌系统性治疗的梳理和展望[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 644-650.
[11] 罗柳平, 吴萌萌, 陈欣磊, 林科灿. 胰腺全系膜切除在胰头癌根治术中的应用价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 651-656.
[12] 张瑜, 姜梦妮. 基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 657-664.
[13] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[14] 董晓斌, 张静, 苏莎莎, 莎比亚·沙吾提, 盛好. 溃疡性结肠炎患者相关环状RNA 差异表达谱分析及功能研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 499-509.
[15] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?