切换至 "中华医学电子期刊资源库"

中华普外科手术学杂志(电子版) ›› 2019, Vol. 13 ›› Issue (03) : 320 -322. doi: 10.3877/cma.j.issn.1674-3946.2019.03.033

所属专题: 文献

综述

线粒体DNA经STING信号通路介导免疫应答的研究进展
刘颂1, 管文贤1,()   
  1. 1. 210008 南京,南京大学医学院附属南京鼓楼医院普通外科
  • 收稿日期:2018-05-23 出版日期:2019-06-26
  • 通信作者: 管文贤

Recent advancement in understanding STING-mediated mitochondrial DNA in immune responses

Song Liu1, Wenxian Guan1,()   

  1. 1. Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NANJING, 210008
  • Received:2018-05-23 Published:2019-06-26
  • Corresponding author: Wenxian Guan
  • About author:
    Corresponding author: Guan Wenxian, Email:
  • Supported by:
    National Natural Science Foundation of China(81602103); Natural Science Foundation of Jiangsu Province(BK20160114); Distinguished Young Scholar Project of Medical Science and Technology Development Foundation of Nanjing Department of Health(JQX17005); Key Project of Medical Science and Technology Development Foundation of Nanjing Department of Health(YKK16114); Medical Research Program of Jiangsu Provincial Commission of Health and Family Planning(Q2017007); Wu Jieping Medical Foundation(320.2710.1817)
引用本文:

刘颂, 管文贤. 线粒体DNA经STING信号通路介导免疫应答的研究进展[J]. 中华普外科手术学杂志(电子版), 2019, 13(03): 320-322.

Song Liu, Wenxian Guan. Recent advancement in understanding STING-mediated mitochondrial DNA in immune responses[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2019, 13(03): 320-322.

近期研究显示,线粒体的功能已不单单限于有氧呼吸及能量合成,线粒体释放的损伤相关分子模式(尤其是线粒体DNA)参与机体的一系列免疫调控,介导机体特定免疫应答的形成与发展。近年新发现的循环鸟苷酸-腺苷酸合成酶(cGAS-STING)信号通路不仅负责识别外源性致病菌DNA,同样识别内源性DNA(包括线粒体DNA)。干扰素基因刺激蛋白(STING)介导的线粒体DNA广泛参与机体多种炎性疾病、感染性疾病及肿瘤的发生发展。本文将概述STING识别线粒体DNA的分子通路,阐释线粒体DNA参与形成肿瘤免疫微环境的机制,着重讨论线粒体DNA诱导细胞凋亡、自噬及中性粒细胞陷阱形成的免疫学过程与临床意义。

Recent studies reveal that mitochondria plays not only as energy generator but also as immune participant. Mitochondrial DNA recognized by cGAS-STING signaling is involved in various infectious, inflammatory and tumorigenesis events. This review will summarize the molecular signaling of STING-mediated mitochondrial DNA during pathophysiological conditions, explain the mechanism by which mitochondrial DNA induces tumor microenvironment, and discuss how mitochondrial DNA participates in cell apoptosis, autophagy and neutrophil-induced traps.

[1]
West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses[J]. Nat Rev Immunol, 2011, 11(6): 389-402.
[2]
Hemmi H, Takeuchi O, Kawai T, et al.A toll-like receptor recognizes bacterial DNA[J]. Nature, 2000, 408(6813): 740-745.
[3]
Liu S, Zhang Y, Ren J, et al.Microbial DNA recognition by cGAS-STING and other sensors in dendritic cells in inflammatory bowel diseases[J]. Inflamm Bowel Dis, 2015, 21(4): 901-911.
[4]
Sun L, Wu J, Du F, et al.Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway[J]. Science, 2013, 339(6121): 786-791.
[5]
Abe T, Barber GN.Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1[J]. J Virol, 2014, 88(10): 5328-5341.
[6]
Ishikawa H, Barber GN.STING is an endoplasmic reticulum adaptor that facilitates innate immune signaling[J]. Nature, 2008, 455(7213): 674-678.
[7]
McWhirter SM, Barbalat R, Monroe KM, et al.A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP[J]. J Exp Med, 2009, 206(9): 1899-1911.
[8]
Rongvaux A, Jackson R, Harman CC, et al.Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA[J]. Cell, 2014, 159(7): 1563-1577.
[9]
White MJ, McArthur K, Metcalf D, et al.Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production[J]. Cell, 2014, 159(7): 1549-1562.
[10]
West AP, Khoury-Hanold W, Staron M, et al.Mitochondrial DNA stress primes the antiviral innate immune response[J]. Nature, 2015, 520(7548): 553-557.
[11]
Yousefi S, Gold JA, Andina N, et al.Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense[J]. Nat Med, 2008, 14(9): 949-953.
[12]
Collins LV, Hajizadeh S, Holme E, et al.Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses[J]. J Leukoc Biol, 2004, 75(6): 995-1000.
[13]
Brinkmann V, Reichard U, Goosmann C, et al.Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663): 1532-1535.
[14]
Yousefi S, Mihalache C, Kozlowski E, et al.Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps[J]. Cell Death Differ, 2009, 16(11): 1438-1444.
[15]
McIlroy DJ, Jarnicki AG, Au GG, et al.Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery[J]. J Crit Care, 2014, 29(6): 1133.e1-1133.e5.
[16]
Zhang Q, Raoof M, Chen Y, et al.Circulating mitochondrial DAMPs cause inflammatory responses to injury[J]. Nature, 2010, 464(7285): 104-107.
[17]
Itagaki K, Kaczmarek E, Lee YT, et al.Mitochondrial DNA released by trauma induces neutrophil extracellular traps[J]. PLoS One, 2015, 10(3): e0120549-e0120549.
[18]
Petrasek J, Iracheta-Vellve A, Csak T, et al.STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease[J]. Proc Natl Acad Sci U S A, 2013, 110(41): 16544-16549.
[19]
Liu Y, Jesus AA, Marrero B, et al.Activated STING in a vascular and pulmonary syndrome[J]. N Engl J Med, 2014, 371(6): 507-518.
[20]
Watson RO, Manzanillo PS, Cox JS.Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway[J]. Cell, 2012, 150(4): 803-815.
[21]
Watson RO, Bell SL, MacDuff DA, et al.The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy[J]. Cell Host Microbe, 2015, 17(6): 811-819.
[22]
Wassermann R, Gulen MF, Sala C, et al.Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1[J]. Cell Host Microbe, 2015, 17(6): 799-810.
[23]
Collins AC, Cai H, Li T, et al.Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis[J]. Cell Host Microbe, 2015, 17(6): 820-828.
[24]
Liang Q, Seo GJ, Choi YJ, et al.Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses[J]. Cell Host Microbe, 2014, 15(2): 228-238.
[25]
Timmermans K, Kox M, Gerretsen J, et al.The involvement of danger-associated molecular patterns in the development of immunoparalysis in cardiac arrest patients[J]. Crit Care Med, 2015, 43(11): 2332-2338.
[26]
Liu X, Pu Y, Cron K, et al.CD47 blockade triggers T cell-mediated destruction of immunogenic tumors[J]. Nat Med, 2015, 21(10): 1209-1215.
[27]
刘颂,任建安.炎症性肠病中cGAS-cGAMP-STING识别病原体DNA的研究进展[J].国际外科学杂志,2015,42(7):493-497.
[28]
Liu S, Feng M, Guan W. Mitochondrial DNA sensing by STING signaling participates in inflammation, cancer and beyond[J]. Int J Cancer, 2016, 139(4): 736-741.
[29]
Rustom A, Saffrich R, Markovic I, et al.Nanotubular highways for intercellular organelle transport[J]. Science, 2004, 303(5660): 1007-1010.
[30]
Rebbeck CA, Leroi AM, Burt A. Mitochondrial capture by a transmissible cancer[J]. Science, 2011, 331(6015): 303-303.
[31]
Tan AS, Baty JW, Dong LF, et al.Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA[J]. Cell Metab, 2015, 21(1): 81-94.
[32]
Pasquier J, Guerrouahen BS, Al Thawadi H, et al.Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance[J]. J Transl Med, 2013, 11: 94-94.
[33]
刘颂,任建安.炎症性肠病中肠道树突状细胞经cGAS-cGAMP-STING识别病原体DNA的机制研究进展[J].国际外科学杂志,2015, 42(7):493-497.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[5] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[6] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[7] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[8] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[9] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[10] 郝昭昭, 李多, 南岩东. 以肺磨玻璃结节为表现的肺腺癌发生机制研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 435-437.
[11] 邓春文, 陈嵩, 钟裴, 闵师强, 万健. LncRNA CRNDE通过miR-181a-5p/SOX6轴调节脂多糖诱导人肺泡上皮细胞的炎症反应和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 129-136.
[12] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[13] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[14] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要