切换至 "中华医学电子期刊资源库"

中华普外科手术学杂志(电子版) ›› 2019, Vol. 13 ›› Issue (03) : 320 -322. doi: 10.3877/cma.j.issn.1674-3946.2019.03.033

所属专题: 文献

综述

线粒体DNA经STING信号通路介导免疫应答的研究进展
刘颂1, 管文贤1,()   
  1. 1. 210008 南京,南京大学医学院附属南京鼓楼医院普通外科
  • 收稿日期:2018-05-23 出版日期:2019-06-26
  • 通信作者: 管文贤

Recent advancement in understanding STING-mediated mitochondrial DNA in immune responses

Song Liu1, Wenxian Guan1,()   

  1. 1. Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NANJING, 210008
  • Received:2018-05-23 Published:2019-06-26
  • Corresponding author: Wenxian Guan
  • About author:
    Corresponding author: Guan Wenxian, Email:
  • Supported by:
    National Natural Science Foundation of China(81602103); Natural Science Foundation of Jiangsu Province(BK20160114); Distinguished Young Scholar Project of Medical Science and Technology Development Foundation of Nanjing Department of Health(JQX17005); Key Project of Medical Science and Technology Development Foundation of Nanjing Department of Health(YKK16114); Medical Research Program of Jiangsu Provincial Commission of Health and Family Planning(Q2017007); Wu Jieping Medical Foundation(320.2710.1817)
引用本文:

刘颂, 管文贤. 线粒体DNA经STING信号通路介导免疫应答的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2019, 13(03): 320-322.

Song Liu, Wenxian Guan. Recent advancement in understanding STING-mediated mitochondrial DNA in immune responses[J/OL]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2019, 13(03): 320-322.

近期研究显示,线粒体的功能已不单单限于有氧呼吸及能量合成,线粒体释放的损伤相关分子模式(尤其是线粒体DNA)参与机体的一系列免疫调控,介导机体特定免疫应答的形成与发展。近年新发现的循环鸟苷酸-腺苷酸合成酶(cGAS-STING)信号通路不仅负责识别外源性致病菌DNA,同样识别内源性DNA(包括线粒体DNA)。干扰素基因刺激蛋白(STING)介导的线粒体DNA广泛参与机体多种炎性疾病、感染性疾病及肿瘤的发生发展。本文将概述STING识别线粒体DNA的分子通路,阐释线粒体DNA参与形成肿瘤免疫微环境的机制,着重讨论线粒体DNA诱导细胞凋亡、自噬及中性粒细胞陷阱形成的免疫学过程与临床意义。

Recent studies reveal that mitochondria plays not only as energy generator but also as immune participant. Mitochondrial DNA recognized by cGAS-STING signaling is involved in various infectious, inflammatory and tumorigenesis events. This review will summarize the molecular signaling of STING-mediated mitochondrial DNA during pathophysiological conditions, explain the mechanism by which mitochondrial DNA induces tumor microenvironment, and discuss how mitochondrial DNA participates in cell apoptosis, autophagy and neutrophil-induced traps.

[1]
West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses[J]. Nat Rev Immunol, 2011, 11(6): 389-402.
[2]
Hemmi H, Takeuchi O, Kawai T, et al.A toll-like receptor recognizes bacterial DNA[J]. Nature, 2000, 408(6813): 740-745.
[3]
Liu S, Zhang Y, Ren J, et al.Microbial DNA recognition by cGAS-STING and other sensors in dendritic cells in inflammatory bowel diseases[J]. Inflamm Bowel Dis, 2015, 21(4): 901-911.
[4]
Sun L, Wu J, Du F, et al.Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway[J]. Science, 2013, 339(6121): 786-791.
[5]
Abe T, Barber GN.Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1[J]. J Virol, 2014, 88(10): 5328-5341.
[6]
Ishikawa H, Barber GN.STING is an endoplasmic reticulum adaptor that facilitates innate immune signaling[J]. Nature, 2008, 455(7213): 674-678.
[7]
McWhirter SM, Barbalat R, Monroe KM, et al.A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP[J]. J Exp Med, 2009, 206(9): 1899-1911.
[8]
Rongvaux A, Jackson R, Harman CC, et al.Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA[J]. Cell, 2014, 159(7): 1563-1577.
[9]
White MJ, McArthur K, Metcalf D, et al.Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production[J]. Cell, 2014, 159(7): 1549-1562.
[10]
West AP, Khoury-Hanold W, Staron M, et al.Mitochondrial DNA stress primes the antiviral innate immune response[J]. Nature, 2015, 520(7548): 553-557.
[11]
Yousefi S, Gold JA, Andina N, et al.Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense[J]. Nat Med, 2008, 14(9): 949-953.
[12]
Collins LV, Hajizadeh S, Holme E, et al.Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses[J]. J Leukoc Biol, 2004, 75(6): 995-1000.
[13]
Brinkmann V, Reichard U, Goosmann C, et al.Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663): 1532-1535.
[14]
Yousefi S, Mihalache C, Kozlowski E, et al.Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps[J]. Cell Death Differ, 2009, 16(11): 1438-1444.
[15]
McIlroy DJ, Jarnicki AG, Au GG, et al.Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery[J]. J Crit Care, 2014, 29(6): 1133.e1-1133.e5.
[16]
Zhang Q, Raoof M, Chen Y, et al.Circulating mitochondrial DAMPs cause inflammatory responses to injury[J]. Nature, 2010, 464(7285): 104-107.
[17]
Itagaki K, Kaczmarek E, Lee YT, et al.Mitochondrial DNA released by trauma induces neutrophil extracellular traps[J]. PLoS One, 2015, 10(3): e0120549-e0120549.
[18]
Petrasek J, Iracheta-Vellve A, Csak T, et al.STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease[J]. Proc Natl Acad Sci U S A, 2013, 110(41): 16544-16549.
[19]
Liu Y, Jesus AA, Marrero B, et al.Activated STING in a vascular and pulmonary syndrome[J]. N Engl J Med, 2014, 371(6): 507-518.
[20]
Watson RO, Manzanillo PS, Cox JS.Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway[J]. Cell, 2012, 150(4): 803-815.
[21]
Watson RO, Bell SL, MacDuff DA, et al.The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy[J]. Cell Host Microbe, 2015, 17(6): 811-819.
[22]
Wassermann R, Gulen MF, Sala C, et al.Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1[J]. Cell Host Microbe, 2015, 17(6): 799-810.
[23]
Collins AC, Cai H, Li T, et al.Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis[J]. Cell Host Microbe, 2015, 17(6): 820-828.
[24]
Liang Q, Seo GJ, Choi YJ, et al.Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses[J]. Cell Host Microbe, 2014, 15(2): 228-238.
[25]
Timmermans K, Kox M, Gerretsen J, et al.The involvement of danger-associated molecular patterns in the development of immunoparalysis in cardiac arrest patients[J]. Crit Care Med, 2015, 43(11): 2332-2338.
[26]
Liu X, Pu Y, Cron K, et al.CD47 blockade triggers T cell-mediated destruction of immunogenic tumors[J]. Nat Med, 2015, 21(10): 1209-1215.
[27]
刘颂,任建安.炎症性肠病中cGAS-cGAMP-STING识别病原体DNA的研究进展[J].国际外科学杂志,2015,42(7):493-497.
[28]
Liu S, Feng M, Guan W. Mitochondrial DNA sensing by STING signaling participates in inflammation, cancer and beyond[J]. Int J Cancer, 2016, 139(4): 736-741.
[29]
Rustom A, Saffrich R, Markovic I, et al.Nanotubular highways for intercellular organelle transport[J]. Science, 2004, 303(5660): 1007-1010.
[30]
Rebbeck CA, Leroi AM, Burt A. Mitochondrial capture by a transmissible cancer[J]. Science, 2011, 331(6015): 303-303.
[31]
Tan AS, Baty JW, Dong LF, et al.Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA[J]. Cell Metab, 2015, 21(1): 81-94.
[32]
Pasquier J, Guerrouahen BS, Al Thawadi H, et al.Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance[J]. J Transl Med, 2013, 11: 94-94.
[33]
刘颂,任建安.炎症性肠病中肠道树突状细胞经cGAS-cGAMP-STING识别病原体DNA的机制研究进展[J].国际外科学杂志,2015, 42(7):493-497.
[1] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[2] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[3] 许彬, 王丽, 陈瑞, 沈奕, 陆件. 瞬时受体电位粘脂素1介导细胞自噬在远端缺血后处理保护大鼠脑缺血-再灌注损伤中的作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 180-187.
[4] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[5] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[6] 孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.
[7] 廖泽楷, 梁爱琳, 龚启梅. 根尖周病中程序性细胞死亡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 150-155.
[8] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[9] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[10] 周慧宇, 吕定阳, 双卫兵. 联合系统性免疫炎症指数和预后营养指数预测腹腔镜肾切除术后肾癌患者的预后[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 225-231.
[11] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[12] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[13] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[14] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[15] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
阅读次数
全文


摘要